def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.randomizer = Randomizer(Random()) selector_configuration = [ EvolutionRandomSelectorConfiguration.create(), EvolutionRouletteSelectorConfiguration.create() ] self.configuration = EvolutionConfiguration.create( selector_configuration, inversion_chance=0, mutation_chance=0, crossover_chance=0) self.create_rule_population() self.create_grammar_statistics() self.create_rule_adding() self.sut = EvolutionService(self.randomizer) self.rules = [ Rule(Symbol('S'), Symbol('NP'), Symbol('VP')), Rule(Symbol('VP'), Symbol('VP'), Symbol('PP')), Rule(Symbol('VP'), Symbol('V'), Symbol('NP')), TerminalRule(Symbol('VP'), Symbol('eats')), Rule(Symbol('PP'), Symbol('P'), Symbol('NP')), Rule(Symbol('NP'), Symbol('Det'), Symbol('N')), TerminalRule(Symbol('NP'), Symbol('she')), TerminalRule(Symbol('V'), Symbol('eats')), TerminalRule(Symbol('P'), Symbol('with')), TerminalRule(Symbol('N'), Symbol('fish')), TerminalRule(Symbol('N'), Symbol('fork')), TerminalRule(Symbol('Det'), Symbol('a')) ]
def __init__(self, randomizer, run_no, cyk_service_variant=None): self.cyk_service_variant = cyk_service_variant if cyk_service_variant is not None \ else CykServiceVariationManager(False) self.randomizer = randomizer self.configuration = None self.rule_adding = AddingRuleSupervisor.default(randomizer) self.grammar_estimator = None self.induction = self.cyk_service_variant.create_cyk_service(randomizer, self.rule_adding) self.evolution = EvolutionService(randomizer) self.stop_criteria = [NoStopCriteriaSpecified()] self.run_no = run_no
class GcsRunner(object): def __init__(self, randomizer, run_no, cyk_service_variant=None): self.cyk_service_variant = cyk_service_variant if cyk_service_variant is not None \ else CykServiceVariationManager(False) self.randomizer = randomizer self.configuration = None self.rule_adding = AddingRuleSupervisor.default(randomizer) self.grammar_estimator = None self.induction = self.cyk_service_variant.create_cyk_service(randomizer, self.rule_adding) self.evolution = EvolutionService(randomizer) self.stop_criteria = [NoStopCriteriaSpecified()] self.run_no = run_no def create_stop_criteria(self): self.stop_criteria = [ FitnessStopCriteria(self.grammar_estimator, self.configuration), StepStopCriteria(self.configuration), TimeStopCriteria(self.configuration) ] def _random_symbol_id(self, configuration): return self.randomizer.randint( RulePopulation.symbol_shift(), RulePopulation.symbol_shift() + configuration.rule.max_non_terminal_symbols) def generate_random_rules(self, provided_rules): rules = set() rules |= set(provided_rules) while len(rules) < self.configuration.rule.random_starting_population_size: rules.add(Rule(Symbol(self._random_symbol_id(self.configuration)), Symbol(self._random_symbol_id(self.configuration)), Symbol(self._random_symbol_id(self.configuration)))) return list(rules) def add_initial_rules(self, initial_rules, rule_population, grammar_statistics): for rule in initial_rules: rule_population.add_rule(rule, self.randomizer) grammar_statistics.on_added_new_rule(rule) def perform_gcs(self, initial_rules, configuration, grammar_estimator, grammar_statistics, sentences): self.configuration = configuration self.rule_adding.configuration = self.configuration.rule.adding self.grammar_estimator = grammar_estimator self.create_stop_criteria() rule_population = self.cyk_service_variant.create_rule_population( self.configuration.rule.starting_symbol, self.configuration.rule.universal_symbol, max_non_terminal_symbols=self.configuration.rule.max_non_terminal_symbols) self.add_initial_rules(self.generate_random_rules(initial_rules), rule_population, grammar_statistics) evolution_step = 0 # print('') while not any(cr() for cr in self.stop_criteria): # print('.', end='') evolution_step_estimator = EvolutionStepEstimator() self.induction.perform_cyk_for_all_sentences(rule_population, sentences, evolution_step_estimator, self.configuration.induction, grammar_statistics) self.grammar_estimator.append_step_estimation(evolution_step, evolution_step_estimator) if self.configuration.should_run_evolution: self.evolution.run_genetic_algorithm(grammar_statistics, rule_population, self.rule_adding, self.configuration.evolution) evolution_step += 1 self._post_step_actions(evolution_step) stop_reasoning = next(cr for cr in self.stop_criteria if cr.has_been_fulfilled()) fitness_reached = self.grammar_estimator['fitness'].get_global_max() # for x in rule_population.get_all_non_terminal_rules(): # print(x) # for x in rule_population.get_terminal_rules(): # print(x) return rule_population, stop_reasoning, fitness_reached, evolution_step def _post_step_actions(self, step): pass
class TestEvolution(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.randomizer = Randomizer(Random()) selector_configuration = [ EvolutionRandomSelectorConfiguration.create(), EvolutionRouletteSelectorConfiguration.create() ] self.configuration = EvolutionConfiguration.create( selector_configuration, inversion_chance=0, mutation_chance=0, crossover_chance=0) self.create_rule_population() self.create_grammar_statistics() self.create_rule_adding() self.sut = EvolutionService(self.randomizer) self.rules = [ Rule(Symbol('S'), Symbol('NP'), Symbol('VP')), Rule(Symbol('VP'), Symbol('VP'), Symbol('PP')), Rule(Symbol('VP'), Symbol('V'), Symbol('NP')), TerminalRule(Symbol('VP'), Symbol('eats')), Rule(Symbol('PP'), Symbol('P'), Symbol('NP')), Rule(Symbol('NP'), Symbol('Det'), Symbol('N')), TerminalRule(Symbol('NP'), Symbol('she')), TerminalRule(Symbol('V'), Symbol('eats')), TerminalRule(Symbol('P'), Symbol('with')), TerminalRule(Symbol('N'), Symbol('fish')), TerminalRule(Symbol('N'), Symbol('fork')), TerminalRule(Symbol('Det'), Symbol('a')) ] def create_rule_population(self): self.starting_symbol = Symbol('S') self.rule_population = RulePopulation(self.starting_symbol) def create_grammar_statistics(self): configuration = ClassicalStatisticsConfiguration.default() configuration.base_fitness = 5 configuration.classical_fitness_weight = 1 configuration.fertility_weight = 1 configuration.positive_weight = 1 configuration.negative_weight = 1 self.grammar_statistics = GrammarStatistics( configuration, self.randomizer, ClassicRuleStatistics(), ClassicFitness()) def create_rule_adding(self): configuration = AddingRulesConfiguration.create( crowding_factor=2, crowding_size=3, elitism_size=2, max_non_terminal_rules=19 ) adding_strategies = [SimpleAddingRuleStrategy(), AddingRuleWithCrowdingStrategy(), AddingRuleWithElitismStrategy()] self.rule_adding = AddingRuleSupervisor(self.randomizer, configuration, adding_strategies) def simulate_induction_part_work(self, rules): for rule in rules: self.rule_adding.add_rule(rule, self.rule_population, self.grammar_statistics) for rule in rules: rule_usage_info = ClassicRuleUsageInfo(True, 1) positive_usages = self.randomizer.randint(1, 4) for _ in range(positive_usages): self.grammar_statistics.on_rule_usage(rule, rule_usage_info) rule_usage_info.positive_sentence = False self.grammar_statistics.on_rule_usage(rule, rule_usage_info) self.grammar_statistics.fitness.get(self.grammar_statistics, rule) def get_symbols_from_rules(self, rules): return {y for y in chain.from_iterable( (x.parent, x.left_child, x.right_child) for x in rules)} def assert_contains_rules(self, rules, rules_pool): for rule in rules: assert_that(rules_pool, has_item(rule)) def count_rules_that_has_changed(self, old): changed_rules = 0 for rule in self.rule_population.get_all_non_terminal_rules(): changed_rules += 1 if rule not in old else 0 return changed_rules def test_given_no_operator_used_rule_population_should_remain_unchanged(self): # Given: self.simulate_induction_part_work(self.rules) old_population = copy.deepcopy(self.rule_population) # When: self.sut.run_genetic_algorithm(self.grammar_statistics, self.rule_population, self.rule_adding, self.configuration) # Then: self.assert_contains_rules(self.rule_population.get_all_non_terminal_rules(), list(old_population.get_all_non_terminal_rules())) old_symbols = self.get_symbols_from_rules(old_population.get_all_non_terminal_rules()) new_symbols = self.get_symbols_from_rules(self.rule_population.get_all_non_terminal_rules()) assert_that(old_symbols, has_items(*new_symbols)) def promote_those_rules_to_elite(self, rules): for rule in rules: rule_usage_info = ClassicRuleUsageInfo(True, 1) positive_usages = 5 for _ in range(positive_usages): self.grammar_statistics.on_rule_usage(rule, rule_usage_info) def test_given_high_operator_usage_rule_population_should_expect_some_major_change(self): # Given: self.configuration.operators.inversion.chance = 1 self.configuration.operators.mutation.chance = 1 self.configuration.operators.crossover.chance = 1 self.simulate_induction_part_work(self.rules) self.promote_those_rules_to_elite(self.rules[0:2]) elite = list(self.rules[0:2]) old_population = copy.deepcopy(self.rule_population) # When: self.sut.run_genetic_algorithm(self.grammar_statistics, self.rule_population, self.rule_adding, self.configuration) # Then: self.assert_contains_rules(elite, list(old_population.get_all_non_terminal_rules())) assert_that(self.count_rules_that_has_changed(old_population.get_all_non_terminal_rules()), is_(greater_than_or_equal_to(2))) old_symbols = self.get_symbols_from_rules(old_population.get_all_non_terminal_rules()) new_symbols = self.get_symbols_from_rules(self.rule_population.get_all_non_terminal_rules()) assert_that(old_symbols, not_(has_items(*new_symbols)))