Exemple #1
0
def simulate_learning(neurons, receptors, nrns_sd, rctrs_sd, arena):
    """
    Run simulation for 40 seconds based on network topology encoded in
    individual.

    @param individual: Binary string encoding network topology.
    @param arena: The arena object in which the simulation is carried
                    out.
    @param n_step: Number of steps the simulation is divided in.
    @param t_step: Number of milliseconds in each step.
    @param reset: bool triggering the reset of the nest kernel.
    """

    global simtime
    simdata = create_empty_data_lists()

    if data['init'] == 'random':
        simdata['x_init'], simdata['y_init'], theta_init = \
                                                    select_random_pose(arena)
    x_cur = simdata['x_init']
    y_cur =  simdata['y_init']
    theta_cur = theta_init

    err_l, err_r = 0, 0

    simdata['rctr_nrn_trace'].append(np.zeros((18, 10)))
    simdata['nrn_nrn_trace'].append(np.zeros((10, 10)))
    motor_spks = nrns_sd[6:]

    for t in range(n_step):
        ev.update_refratory_perioud()
        simdata['traj'].append((x_cur, y_cur))

        px = network.set_receptors_firing_rate(x_cur, y_cur, theta_cur,
                                               err_l, err_r)
        simdata['pixel_values'].append(px)

        # Run simulation for time-step
        nest.Simulate(t_step)
        simtime += t_step
        motor_firing_rates = network.get_motor_neurons_firing_rates(motor_spks)

        v_l_act, v_r_act, v_t, w_t, err_l, err_r, col, v_l_des, v_r_des = \
        motion.update_wheel_speeds(x_cur, y_cur, theta_cur, motor_firing_rates)

        # Save dsired and actual speeds
        simdata['speed_log'].append((v_l_act, v_r_act))
        simdata['desired_speed_log'].append((v_l_des, v_r_des))

        # Save motor neurons firing rates
        simdata['motor_fr'].append(motor_firing_rates)

        # Save linear and angualr velocities
        simdata['linear_velocity_log'].append(v_t)
        simdata['angular_velocity_log'].append(w_t)

        # Move robot according to the read-out speeds from motor neurons
        x_cur, y_cur, theta_cur = motion.move(x_cur, y_cur, theta_cur, v_t,
                                              w_t)

        nrns_st, rctrs_st = learning.get_spike_times(nrns_sd, rctrs_sd)
        rec_nrn_tags, nrn_nrn_tags, rctr_t, nrn_t, pt = \
            learning.get_eligibility_trace(nrns_st, rctrs_st, simtime,
                    simdata['rctr_nrn_trace'][t], simdata['nrn_nrn_trace'][t])
        print simtime
        simdata['rctr_nrn_trace'].append(rec_nrn_tags)
        simdata['nrn_nrn_trace'].append(nrn_nrn_tags)

        # Stop simulation if collision occurs
        if col:
            simdata['speed_log'].extend((0, 0) for k in range(t, 400))
            break

    simdata['fitness'] = ev.get_fitness_value(simdata['speed_log'])

    return simdata, rctr_t, nrn_t, pt, col    
         # Save linear and angualr velocities
         simdata['linear_velocity_log'].append(v_t)
         simdata['angular_velocity_log'].append(w_t)
 
         # Move robot according to the read-out speeds from motor neurons
         x_cur, y_cur, theta_cur = env.move(x_cur, y_cur, theta_cur, v_t, w_t)
 
         nrns_st, rctrs_st = learning.get_spike_times(nrns_sd, rctrs_sd)
         rec_nrn_tags, nrn_nrn_tags, rctr_t, nrn_t, pt = learning.get_eligibility_trace(
                     nrns_st, rctrs_st, simtime,
                     simdata['rctr_nrn_trace'][t], simdata['nrn_nrn_trace'][t])
         
         simdata['rctr_nrn_trace'].append(rec_nrn_tags)
         simdata['nrn_nrn_trace'].append(nrn_nrn_tags)
         if (t+1) % 10 == 0:
             fitness = ev.get_fitness_value(simdata['speed_log'][t-10:])
             print "Fitness"
             print fitness
             print "Reward"
             reward = learning.get_reward(reward, fitness, x_cur, y_cur)
             print reward
             simdata['reward'].append(reward)
             delta_w_rec, delta_w_nrn = learning.get_weight_changes(reward, rec_nrn_tags,
                                                       nrn_nrn_tags)
             learning.update_weights(delta_w_rec, delta_w_nrn, nrns, rctrs)
             weights.append(learning.get_weights(rctrs, nrns))
         # Stop simulation if collision occurs
         if col:
 #            simdata['speed_log'].extend((0, 0) for k in range(t, 400))
 #            break
             print "COLLISION"
Exemple #3
0
def simulate_evolution(individual, arena, n_step, t_step, reset=True):
    """
    Run simulation for 40 seconds based on network topology encoded in
    individual.

    @param individual: Binary string encoding network topology.
    @param arena: The arena object in which the simulation is carried
                    out.
    @param n_step: Number of steps the simulation is divided in.
    @param t_step: Number of milliseconds in each step.
    @param reset: bool triggering the reset of the nest kernel.
    """

    # Reset nest kernel just in case it was not reset & adjust
    # resolution.
    nest.ResetKernel()
    nest.SetKernelStatus({'resolution': 1.0, 'local_num_threads': 4})
    nest.set_verbosity('M_ERROR')

    if data['init'] == 'random':
        x, y, theta = select_random_pose(arena)

    simdata = create_empty_data_lists()
    simdata['x_init'] = x_init
    simdata['y_init'] = y_init
    simdata['theta_init'] = theta_init

    motor_spks = network.create_evolutionary_network(individual, data['model'])
    x_cur = x_init
    y_cur = y_init
    theta_cur = theta_init
    err_l, err_r = 0, 0

    for t in range(n_step):
        # Save current position in trajectory list
        simdata['traj'].append((x_cur, y_cur))

        # Add nioise to
        network.update_refratory_perioud(data['model'])

        # Set receptors' firing probability
        px = network.set_receptors_firing_rate(x_cur, y_cur, theta_cur,
                                               err_l, err_r, arena)
        simdata['pixel_values'].append(px)

        # Run simulation for 100 ms
        nest.Simulate(t_step)

        motor_firing_rates = network.get_motor_neurons_firing_rates(motor_spks)

        # Get desired and actual speeds
        col, speed_dict = motion.update_wheel_speeds(x_cur, y_cur, theta_cur,
                                                 motor_firing_rates, t_step,
                                                 arena)

        # Stop simulation if collision occurs
        if col:
            simdata['speed_log'].extend((0, 0) for k in range(t, 400))
            break

        # Save simulation data
        simdata['speed_log'].append((speed_dict['actual_left'],
                                     speed_dict['actual_right']))
        simdata['desired_speed_log'].append((speed_dict['desired_left'],
                                             speed_dict['desired_right']))
        simdata['motor_fr'].append(motor_firing_rates)
        simdata['linear_velocity_log'].append(speed_dict['linear'])
        simdata['angular_velocity_log'].append(speed_dict['angular'])

        # Move robot according to the read-out speeds from motor neurons
        x_cur, y_cur, theta_cur = motion.move(x_cur, y_cur, theta_cur,
                    speed_dict['linear'], speed_dict['angular'], t_step/1000.)

    # Calculate individual's fitness value
    simdata['fitness'] = ev.get_fitness_value(simdata['speed_log'])

    # Get average number of spikes per second for each neuron
    simdata['average_spikes'] = network.get_average_spikes_per_second()

    # Get Voltmeter data
    simdata['voltmeter_data'] = network.get_voltmeter_data()

    if reset:
        nest.ResetKernel()
    return simdata