print('Training model.') # train a 1D convnet with global maxpooling sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32') embedded_sequences = embedding_layer(sequence_input) x = Conv1D(128, 5, activation='relu')(embedded_sequences) x = MaxPooling1D(5)(x) x = Conv1D(128, 5, activation='relu')(x) x = MaxPooling1D(5)(x) x = Conv1D(128, 5, activation='relu')(x) x = MaxPooling1D(35)(x) x = Flatten()(x) x = Dense(128, activation='relu')(x) preds = Dense(len(labels_index), activation='softmax')(x) model = Model(sequence_input, preds) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) history = TrainingHistory() sw_manager = StopwatchManager(stop_watch, compile_stop_watch) model.fit(x_train, y_train, batch_size=128, epochs=10, validation_data=(x_val, y_val), callbacks=[history, sw_manager]) output.contents = np.array([history.acc, history.loss, history.val_acc, history.val_loss])
def train(run_name, start_epoch, stop_epoch, img_w): # Input Parameters img_h = 64 words_per_epoch = 1600 val_split = 0.2 val_words = int(words_per_epoch * (val_split)) # Network parameters conv_filters = 16 kernel_size = (3, 3) pool_size = 2 time_dense_size = 32 rnn_size = 512 if K.image_data_format() == 'channels_first': input_shape = (1, img_w, img_h) else: input_shape = (img_w, img_h, 1) fdir = os.path.dirname( get_file('wordlists.tgz', origin='http://www.mythic-ai.com/datasets/wordlists.tgz', untar=True)) img_gen = TextImageGenerator(monogram_file=os.path.join(fdir, 'wordlist_mono_clean.txt'), bigram_file=os.path.join(fdir, 'wordlist_bi_clean.txt'), minibatch_size=32, img_w=img_w, img_h=img_h, downsample_factor=(pool_size**2), val_split=words_per_epoch - val_words) act = 'relu' input_data = Input(name='the_input', shape=input_shape, dtype='float32') inner = Conv2D(conv_filters, kernel_size, padding='same', activation=act, kernel_initializer='he_normal', name='conv1')(input_data) inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max1')(inner) inner = Conv2D(conv_filters, kernel_size, padding='same', activation=act, kernel_initializer='he_normal', name='conv2')(inner) inner = MaxPooling2D(pool_size=(pool_size, pool_size), name='max2')(inner) conv_to_rnn_dims = (img_w // (pool_size**2), (img_h // (pool_size**2)) * conv_filters) inner = Reshape(target_shape=conv_to_rnn_dims, name='reshape')(inner) # cuts down input size going into RNN: inner = Dense(time_dense_size, activation=act, name='dense1')(inner) # Two layers of bidirecitonal GRUs # GRU seems to work as well, if not better than LSTM: gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru1')(inner) gru_1b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru1_b')(inner) gru1_merged = add([gru_1, gru_1b]) gru_2 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru2')(gru1_merged) gru_2b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru2_b')(gru1_merged) # transforms RNN output to character activations: inner = Dense(img_gen.get_output_size(), kernel_initializer='he_normal', name='dense2')(concatenate([gru_2, gru_2b])) y_pred = Activation('softmax', name='softmax')(inner) Model(inputs=input_data, outputs=y_pred).summary() labels = Input(name='the_labels', shape=[img_gen.absolute_max_string_len], dtype='float32') input_length = Input(name='input_length', shape=[1], dtype='int64') label_length = Input(name='label_length', shape=[1], dtype='int64') # Keras doesn't currently support loss funcs with extra parameters # so CTC loss is implemented in a lambda layer loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length]) # clipnorm seems to speeds up convergence sgd = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5) model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out) # the loss calc occurs elsewhere, so use a dummy lambda func for the loss model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=sgd) if start_epoch > 0: weight_file = os.path.join(OUTPUT_DIR, os.path.join(run_name, 'weights%02d.h5' % (start_epoch - 1))) model.load_weights(weight_file) # captures output of softmax so we can decode the output during visualization test_func = K.function([input_data], [y_pred]) viz_cb = VizCallback(run_name, test_func, img_gen.next_val()) history = TrainingHistory() sw_manager = StopwatchManager(stop_watch, compile_stop_watch) model.fit_generator(generator=img_gen.next_train(), steps_per_epoch=(words_per_epoch - val_words), epochs=stop_epoch, validation_data=img_gen.next_val(), validation_steps=val_words, callbacks=[viz_cb, img_gen, history, sw_manager], initial_epoch=start_epoch) output.contents = np.array([history.loss, history.val_loss])