Exemple #1
0
def main(argv):
    parser = get_argument_parser()
    args = parser.parse_args(args=argv)
    config = Config.from_json(args.config)
    config.update_from_args(args, parser)
    if config.dist_url == "env://":
        config.update_from_env()

    configure_paths(config)
    source_root = Path(__file__).absolute().parents[2]  # nncf root
    create_code_snapshot(source_root,
                         osp.join(config.log_dir, "snapshot.tar.gz"))

    if config.seed is not None:
        warnings.warn('You have chosen to seed training. '
                      'This will turn on the CUDNN deterministic setting, '
                      'which can slow down your training considerably! '
                      'You may see unexpected behavior when restarting '
                      'from checkpoints.')

    config.execution_mode = get_execution_mode(config)

    if not is_binarization(config):
        start_worker(main_worker, config)
    else:
        from examples.classification.binarization_worker import main_worker_binarization
        start_worker(main_worker_binarization, config)
def main(argv):
    parser = get_argument_parser()
    args = parser.parse_args(args=argv)
    config = Config.from_json(args.config)
    config.update_from_args(args, parser)
    configure_paths(config)
    source_root = Path(__file__).absolute().parents[2]  # nncf root
    create_code_snapshot(source_root, osp.join(config.log_dir, "snapshot.tar.gz"))

    config.execution_mode = get_execution_mode(config)

    if config.dataset_dir is not None:
        config.train_imgs = config.train_anno = config.test_imgs = config.test_anno = config.dataset_dir
    start_worker(main_worker, config)
Exemple #3
0
def main(argv):
    parser = get_argument_parser()
    config = get_config_from_argv(argv, parser)

    serialize_config(config, config.log_dir)

    nncf_root = Path(__file__).absolute().parents[2]
    create_code_snapshot(nncf_root,
                         os.path.join(config.log_dir, "snapshot.tar.gz"))

    if 'train' in config.mode or 'test' in config.mode:
        train_test_export(config)
    elif 'export' in config.mode:
        export(config)
Exemple #4
0
def main(argv):
    parser = get_argument_parser()
    config = get_config_from_argv(argv, parser)

    #config['eager_mode'] = True
    serialize_config(config, config.log_dir)
    print('*'*50)
    print(f'Using model type: {config.model_type}')
    print('*'*50)
    nncf_root = Path(__file__).absolute().parents[2]
    create_code_snapshot(nncf_root, osp.join(config.log_dir, "snapshot.tar.gz"))
    if 'train' in config.mode or 'test' in config.mode:
        train_test_export(config)
    elif 'export' in config.mode:
        export(config)