Exemple #1
0
def test_reconfigure_render(
    scene,
    sensor_type,
    make_cfg_settings,
):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    for sens in all_sensor_types:
        make_cfg_settings[sens] = False

    make_cfg_settings["scene"] = _test_scenes[-1]
    make_cfg_settings[sensor_type] = True

    cfg = make_cfg(make_cfg_settings)

    with habitat_sim.Simulator(cfg) as sim:
        make_cfg_settings["scene"] = scene
        sim.reconfigure(make_cfg(make_cfg_settings))
        obs, gt = _render_and_load_gt(sim, scene, sensor_type, False)

        # Different GPUs and different driver version will produce slightly
        # different images; differences on aliased edges might also stem from how a
        # particular importer parses transforms
        assert np.linalg.norm(
            obs[sensor_type].astype(np.float) -
            gt.astype(np.float)) < 9.0e-2 * np.linalg.norm(gt.astype(
                np.float)), f"Incorrect {sensor_type} output"

    sim.close()
Exemple #2
0
def test_smoke_redwood_noise(scene, gpu2gpu, make_cfg_settings):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    if not habitat_sim.cuda_enabled and gpu2gpu:
        pytest.skip("Skipping GPU->GPU test")

    make_cfg_settings["depth_sensor"] = True
    make_cfg_settings["color_sensor"] = False
    make_cfg_settings["semantic_sensor"] = False
    make_cfg_settings["scene"] = scene
    hsim_cfg = make_cfg(make_cfg_settings)
    hsim_cfg.agents[0].sensor_specifications[
        0].noise_model = "RedwoodDepthNoiseModel"
    for sensor_spec in hsim_cfg.agents[0].sensor_specifications:
        sensor_spec.gpu2gpu_transfer = gpu2gpu

    with habitat_sim.Simulator(hsim_cfg) as sim:
        obs, gt = _render_and_load_gt(sim, scene, "depth_sensor", gpu2gpu)

        assert np.linalg.norm(
            obs["depth_sensor"].astype(np.float) -
            gt.astype(np.float)) > 1.5e-2 * np.linalg.norm(gt.astype(
                np.float)), "Incorrect depth_sensor output"

    sim.close()
def test_sensors(scene, has_sem, sensor_type, gpu2gpu, sim, make_cfg_settings):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    if not habitat_sim.cuda_enabled and gpu2gpu:
        pytest.skip("Skipping GPU->GPU test")

    make_cfg_settings = {k: v for k, v in make_cfg_settings.items()}
    make_cfg_settings["semantic_sensor"] = has_sem
    make_cfg_settings["scene"] = scene

    cfg = make_cfg(make_cfg_settings)
    for sensor_spec in cfg.agents[0].sensor_specifications:
        sensor_spec.gpu2gpu_transfer = gpu2gpu

    sim.reconfigure(cfg)

    obs, gt = _render_and_load_gt(sim, scene, sensor_type, gpu2gpu)

    # Different GPUs and different driver version will produce slightly
    # different images; differences on aliased edges might also stem from how a
    # particular importer parses transforms
    assert np.linalg.norm(obs[sensor_type].astype(np.float) -
                          gt.astype(np.float)) < 5.0e-2 * np.linalg.norm(
                              gt.astype(
                                  np.float)), f"Incorrect {sensor_type} output"
Exemple #4
0
def test_sensors(
    scene,
    sensor_type,
    gpu2gpu,
    frustum_culling,
    make_cfg_settings,
):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    if not habitat_sim.cuda_enabled and gpu2gpu:
        pytest.skip("Skipping GPU->GPU test")

    for sens in all_sensor_types:
        make_cfg_settings[sens] = False

    make_cfg_settings[sensor_type] = True
    make_cfg_settings["scene"] = scene
    make_cfg_settings["frustum_culling"] = frustum_culling

    cfg = make_cfg(make_cfg_settings)
    for sensor_spec in cfg.agents[0].sensor_specifications:
        sensor_spec.gpu2gpu_transfer = gpu2gpu

    with habitat_sim.Simulator(cfg) as sim:
        obs, gt = _render_and_load_gt(sim, scene, sensor_type, gpu2gpu)

        # Different GPUs and different driver version will produce slightly
        # different images; differences on aliased edges might also stem from how a
        # particular importer parses transforms
        assert np.linalg.norm(
            obs[sensor_type].astype(np.float) - gt.astype(np.float)
        ) < 9.0e-2 * np.linalg.norm(
            gt.astype(np.float)
        ), f"Incorrect {sensor_type} output"
Exemple #5
0
def test_semantic_scene(scene, make_cfg_settings):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    make_cfg_settings = {k: v for k, v in make_cfg_settings.items()}
    make_cfg_settings["semantic_sensor"] = False
    make_cfg_settings["scene"] = scene
    cfg = make_cfg(make_cfg_settings)
    cfg.agents[0].sensor_specifications = []
    sim = habitat_sim.Simulator(cfg)

    scene = sim.semantic_scene
    for obj in scene.objects:
        obj.aabb
        obj.aabb.sizes
        obj.aabb.center
        obj.id
        obj.obb.rotation
        obj.category.name()
        obj.category.index()

    for region in scene.regions:
        region.id
        region.category.name()
        region.category.index()

    for level in scene.levels:
        level.id
def test_initial_hfov(scene, sensor_type, make_cfg_settings):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))
    make_cfg_settings["hfov"] = 70
    with habitat_sim.Simulator(make_cfg(make_cfg_settings)) as sim:
        assert sim.agents[0]._sensors[sensor_type].hfov == mn.Deg(
            70), "HFOV was not properly set"
def test_semantic_scene(scene, sim, make_cfg_settings):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    make_cfg_settings = {k: v for k, v in make_cfg_settings.items()}
    make_cfg_settings["semantic_sensor"] = False
    make_cfg_settings["scene"] = scene
    sim.reconfigure(make_cfg(make_cfg_settings))

    scene = sim.semantic_scene
    for obj in scene.objects:
        obj.aabb
        obj.aabb.sizes
        obj.aabb.center
        obj.id
        obj.obb.rotation
        obj.category.name()
        obj.category.index()

    for region in scene.regions:
        region.id
        region.category.name()
        region.category.index()

    for level in scene.levels:
        level.id
def test_sensors(scene, has_sem, sensor_type, gpu2gpu, sim, make_cfg_settings):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    if not habitat_sim.cuda_enabled and gpu2gpu:
        pytest.skip("Skipping GPU->GPU test")

    make_cfg_settings = {k: v for k, v in make_cfg_settings.items()}
    make_cfg_settings["semantic_sensor"] = has_sem
    make_cfg_settings["scene"] = scene

    cfg = make_cfg(make_cfg_settings)
    for sensor_spec in cfg.agents[0].sensor_specifications:
        sensor_spec.gpu2gpu_transfer = gpu2gpu

    sim.reconfigure(cfg)
    with open(
            osp.abspath(
                osp.join(
                    osp.dirname(__file__),
                    "gt_data",
                    "{}-state.json".format(osp.basename(
                        osp.splitext(scene)[0])),
                )),
            "r",
    ) as f:
        render_state = json.load(f)
        state = habitat_sim.AgentState()
        state.position = render_state["pos"]
        state.rotation = habitat_sim.utils.quat_from_coeffs(
            render_state["rot"])

    sim.initialize_agent(0, state)
    obs = sim.step("move_forward")

    assert sensor_type in obs, f"{sensor_type} not in obs"

    gt = np.load(
        osp.abspath(
            osp.join(
                osp.dirname(__file__),
                "gt_data",
                "{}-{}.npy".format(osp.basename(osp.splitext(scene)[0]),
                                   sensor_type),
            )))
    if gpu2gpu:
        import torch

        for k, v in obs.items():
            if torch.is_tensor(v):
                obs[k] = v.cpu().numpy()

    # Different GPUs and different driver version will produce slightly different images
    assert np.linalg.norm(obs[sensor_type].astype(np.float) -
                          gt.astype(np.float)) < 1.5e-2 * np.linalg.norm(
                              gt.astype(
                                  np.float)), f"Incorrect {sensor_type} output"
Exemple #9
0
def test_sensors(
    scene,
    sensor_type,
    gpu2gpu,
    frustum_culling,
    add_sensor_lazy,
    make_cfg_settings,
):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    if not habitat_sim.cuda_enabled and gpu2gpu:
        pytest.skip("Skipping GPU->GPU test")

    # We only support adding more RGB Sensors if one is already in a scene
    # We can add depth sensors whenever
    add_sensor_lazy = add_sensor_lazy and all_base_sensor_types[1] == sensor_type

    for sens in all_base_sensor_types:
        if add_sensor_lazy:
            make_cfg_settings[sens] = (
                sens in all_base_sensor_types[:2] and sens != sensor_type
            )
        else:
            make_cfg_settings[sens] = False

    make_cfg_settings[sensor_type] = True
    make_cfg_settings["scene"] = scene
    make_cfg_settings["frustum_culling"] = frustum_culling

    cfg = make_cfg(make_cfg_settings)
    if add_sensor_lazy:
        additional_sensors = cfg.agents[0].sensor_specifications[1:]
        cfg.agents[0].sensor_specifications = cfg.agents[0].sensor_specifications[:1]
    for sensor_spec in cfg.agents[0].sensor_specifications:
        sensor_spec.gpu2gpu_transfer = gpu2gpu

    with habitat_sim.Simulator(cfg) as sim:
        if add_sensor_lazy:
            obs: np.ndarray = sim.reset()
            assert len(obs) == 1, "Other sensors were not removed"
            for sensor_spec in additional_sensors:
                sim.add_sensor(sensor_spec)
        if sensor_type in all_exotic_sensor_types:
            obs = _render_scene(sim, scene, sensor_type, gpu2gpu)
            # Smoke Test.
            return
        obs, gt = _render_and_load_gt(sim, scene, sensor_type, gpu2gpu)

        # Different GPUs and different driver version will produce slightly
        # different images; differences on aliased edges might also stem from how a
        # particular importer parses transforms
        assert np.linalg.norm(
            obs[sensor_type].astype(np.float) - gt.astype(np.float)
        ) < 9.0e-2 * np.linalg.norm(
            gt.astype(np.float)
        ), f"Incorrect {sensor_type} output"
def test_set_custom_light_setup(make_cfg_settings):
    with habitat_sim.Simulator(make_cfg(make_cfg_settings)) as sim:
        custom_setup_key = "custom_setup_key"

        light_setup = sim.get_light_setup(custom_setup_key)
        assert len(light_setup) == 0

        light_setup.append(LightInfo(position=[1.0, 1.0, 1.0]))
        assert sim.get_light_setup() != light_setup

        sim.set_light_setup(light_setup, custom_setup_key)
        assert sim.get_light_setup(custom_setup_key) == light_setup
Exemple #11
0
def test_smoke_no_sensors(make_cfg_settings):
    sims = []
    for scene in _test_scenes:
        if not osp.exists(scene):
            continue

        make_cfg_settings = {k: v for k, v in make_cfg_settings.items()}
        make_cfg_settings["semantic_sensor"] = False
        make_cfg_settings["scene"] = scene
        cfg = make_cfg(make_cfg_settings)
        cfg.agents[0].sensor_specifications = []
        sims.append(habitat_sim.Simulator(cfg))
Exemple #12
0
def test_pose_extractors(make_cfg_settings):
    with habitat_sim.Simulator(make_cfg(make_cfg_settings)) as sim:
        scene_filepath = ""
        pose_extractor_names = [
            "closest_point_extractor", "panorama_extractor"
        ]
        for name in pose_extractor_names:
            extractor = ImageExtractor(scene_filepath,
                                       img_size=(32, 32),
                                       sim=sim,
                                       pose_extractor_name=name)
            assert len(extractor) > 1
def test_set_custom_light_setup(make_cfg_settings):
    with habitat_sim.Simulator(make_cfg(make_cfg_settings)) as sim:
        custom_setup_key = "custom_setup_key"

        light_setup = sim.get_light_setup(custom_setup_key)
        assert len(light_setup) == 0

        # define a point light (w == 1)
        light_setup.append(LightInfo(vector=[1.0, 1.0, 1.0, 1.0]))
        assert sim.get_light_setup() != light_setup

        sim.set_light_setup(light_setup, custom_setup_key)
        assert sim.get_light_setup(custom_setup_key) == light_setup
def test_set_default_light_setup(make_cfg_settings):
    with habitat_sim.Simulator(make_cfg(make_cfg_settings)) as sim:
        light_setup = [LightInfo(position=[1.0, 1.0, 1.0])]

        sim.set_light_setup(light_setup)
        assert sim.get_light_setup() == light_setup

        # ensure modifications to local light setup variable are not reflected in sim
        light_setup[0].model = LightPositionModel.CAMERA
        assert sim.get_light_setup() != light_setup

        sim.set_light_setup(light_setup, DEFAULT_LIGHTING_KEY)
        assert sim.get_light_setup() == light_setup
Exemple #15
0
def test_rgba_noise(scene, model_name, make_cfg_settings):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    make_cfg_settings["depth_sensor"] = False
    make_cfg_settings["color_sensor"] = True
    make_cfg_settings["semantic_sensor"] = False
    make_cfg_settings["scene"] = scene
    hsim_cfg = make_cfg(make_cfg_settings)
    hsim_cfg.agents[0].sensor_specifications[0].noise_model = model_name

    with habitat_sim.Simulator(hsim_cfg) as sim:
        obs, gt = _render_and_load_gt(sim, scene, "color_sensor", False)

        assert np.linalg.norm(
            obs["color_sensor"].astype(float) - gt.astype(float)
        ) > 1.5e-2 * np.linalg.norm(gt.astype(float)), "Incorrect color_sensor output"
Exemple #16
0
def test_data_extractor_end_to_end(make_cfg_settings):
    # Path is relative to simulator.py
    with habitat_sim.Simulator(make_cfg(make_cfg_settings)) as sim:
        scene_filepath = ""
        extractor = ImageExtractor(scene_filepath,
                                   labels=[0.0],
                                   img_size=(32, 32),
                                   sim=sim)
        dataset = MyDataset(extractor)
        dataloader = DataLoader(dataset, batch_size=3)
        net = TrivialNet()

        # Run data through network
        for sample_batch in dataloader:
            img, _ = sample_batch["rgba"], sample_batch["label"]
            img = img.permute(0, 3, 2, 1).float()
            net(img)
Exemple #17
0
def test_sensors(scene, has_sem, sensor_type, sim, make_cfg_settings):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    make_cfg_settings = {k: v for k, v in make_cfg_settings.items()}
    make_cfg_settings["semantic_sensor"] = has_sem
    make_cfg_settings["scene"] = scene
    sim.reconfigure(make_cfg(make_cfg_settings))
    with open(
            osp.abspath(
                osp.join(
                    osp.dirname(__file__),
                    "gt_data",
                    "{}-state.json".format(osp.basename(
                        osp.splitext(scene)[0])),
                )),
            "r",
    ) as f:
        render_state = json.load(f)
        state = habitat_sim.AgentState()
        state.position = render_state["pos"]
        state.rotation = habitat_sim.utils.quat_from_coeffs(
            render_state["rot"])

    sim.initialize_agent(0, state)
    obs = sim.step("move_forward")

    assert sensor_type in obs, f"{sensor_type} not in obs"

    gt = np.load(
        osp.abspath(
            osp.join(
                osp.dirname(__file__),
                "gt_data",
                "{}-{}.npy".format(osp.basename(osp.splitext(scene)[0]),
                                   sensor_type),
            )))

    # Different GPUs and different driver version will produce slightly different images
    assert np.linalg.norm(obs[sensor_type].astype(np.float) -
                          gt.astype(np.float)) < 1.5e-2 * np.linalg.norm(
                              gt.astype(
                                  np.float)), f"Incorrect {sensor_type} output"
Exemple #18
0
def test_rgb_noise(scene, model_name, sim, make_cfg_settings):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    make_cfg_settings = {k: v for k, v in make_cfg_settings.items()}
    make_cfg_settings["depth_sensor"] = False
    make_cfg_settings["color_sensor"] = True
    make_cfg_settings["semantic_sensor"] = False
    make_cfg_settings["scene"] = scene
    hsim_cfg = make_cfg(make_cfg_settings)
    hsim_cfg.agents[0].sensor_specifications[0].noise_model = model_name

    sim.reconfigure(hsim_cfg)

    obs, gt = _render_and_load_gt(sim, scene, "color_sensor", False)

    assert np.linalg.norm(
        obs["color_sensor"].astype(np.float) - gt.astype(np.float)
    ) > 1.5e-2 * np.linalg.norm(gt.astype(np.float)), "Incorrect color_sensor output"
def test_sensors(
    scene,
    has_sem,
    sensor_type,
    gpu2gpu,
    frustum_culling,
    sim: habitat_sim.Simulator,
    make_cfg_settings,
):
    if not osp.exists(scene):
        pytest.skip("Skipping {}".format(scene))

    if not habitat_sim.cuda_enabled and gpu2gpu:
        pytest.skip("Skipping GPU->GPU test")

    make_cfg_settings = {k: v for k, v in make_cfg_settings.items()}
    make_cfg_settings[
        "semantic_sensor"] = has_sem and sensor_type == "semantic_sensor"
    make_cfg_settings["scene"] = scene
    make_cfg_settings["frustum_culling"] = frustum_culling

    cfg = make_cfg(make_cfg_settings)
    for sensor_spec in cfg.agents[0].sensor_specifications:
        sensor_spec.gpu2gpu_transfer = gpu2gpu

    # The scene loading may be done differently with/without frustum culling,
    # thus we need to force a reload when frustum culling gets swapped
    if cfg.sim_cfg.frustum_culling != sim.config.sim_cfg.frustum_culling:
        sim.close()

    sim.reconfigure(cfg)

    obs, gt = _render_and_load_gt(sim, scene, sensor_type, gpu2gpu)

    # Different GPUs and different driver version will produce slightly
    # different images; differences on aliased edges might also stem from how a
    # particular importer parses transforms
    assert np.linalg.norm(obs[sensor_type].astype(np.float) -
                          gt.astype(np.float)) < 9.0e-2 * np.linalg.norm(
                              gt.astype(
                                  np.float)), f"Incorrect {sensor_type} output"
Exemple #20
0
def sim(make_cfg_settings):
    return habitat_sim.Simulator(make_cfg(make_cfg_settings))
Exemple #21
0
def test_topdown_view(make_cfg_settings):
    with habitat_sim.Simulator(make_cfg(make_cfg_settings)) as sim:
        tdv = TopdownView(sim, height=0.0, meters_per_pixel=0.1)
        topdown_view = tdv.topdown_view
        assert type(topdown_view) == np.ndarray
def test_get_no_light_setup(make_cfg_settings):
    with habitat_sim.Simulator(make_cfg(make_cfg_settings)) as sim:
        assert len(sim.get_light_setup(NO_LIGHT_KEY)) == 0