D_multiple), 0), n_chains_multiple), group_event_ndims=1) beta = zs.Normal('beta', tf.zeros([K, V]), logstd=tf.ones([K, V]) * log_delta, group_event_ndims=1) return model if __name__ == "__main__": tf.set_random_seed(1237) # Load nips dataset data_name = 'nips' data_path = os.path.join(conf.data_dir, data_name + '.pkl.gz') X, vocab = dataset.load_uci_bow(data_name, data_path) X_train = X[:1200, :] X_test = X[1200:, :] # Define model training/evaluation parameters D = 100 K = 100 V = X_train.shape[1] n_chains = 1 num_e_steps = 5 hmc = zs.HMC(step_size=1e-3, n_leapfrogs=20, adapt_step_size=True, target_acceptance_rate=0.6) epochs = 100
X = X.tocoo() indices = np.transpose(np.array([X.row, X.col])).astype(np.int64) values = X.data p = np.lexsort((indices[:,1], indices[:,0])) #print(p) return indices[p,:], values[p] if __name__ == "__main__": tf.set_random_seed(1237) # Load nips dataset data_name = 'enron' data_path = os.path.join(conf.data_dir, data_name + '.pkl.gz') # TODO write a sparse datareader: FINISHED X, vocab = dataset.load_uci_bow(data_name, data_path, is_sparse=True) X_train = X[:30000, :] X_test = X[30000:, :] X_test_indices, X_test_values = get_indices_and_values(X_test) # Define model training/evaluation parameters D = 2500 K = 100 V = X_train.shape[1] n_chains = 1 num_e_steps = 5 hmc = zs.HMC(step_size=1e-3, n_leapfrogs=20, adapt_step_size=True, target_acceptance_rate=0.6) epochs = 100 learning_rate_0 = 1.0