Exemple #1
0
def inference_no_start_bert_server():
    net.load_state_dict(torch.load(f'{model_path}/model_80.pth'))
    test_x, test_y, test_data = read_data_clean('data/example.test')
    while True:
        index = input('句子0/1/2/.....(都是测试集的句子)')
        sentence = test_x[int(index)]
        train_x_ = (np.load(f'data/test_npy/{index}.npy'))
        train_x_ = torch.Tensor(train_x_).unsqueeze(0)
        train_x_ = to_gpu(train_x_).float()
        tag_seq = net.inference(train_x_)
        prediction_label = [new_dict.get(i) for i in tag_seq[1:-1]]
        print([
            sentence[i] + ":" + prediction_label[i]
            for i in range(len(prediction_label))
        ])
        flag = False
        for i in range(len(prediction_label)):
            if prediction_label[i] != 'O':
                if flag == False:
                    flag = True
                print(sentence[i], ":", prediction_label[i], end=" ")
            elif prediction_label[i] == 'O' and flag == True:
                flag = False
                print(" ")
        print("")
def cal_inference():
    net.load_state_dict(torch.load(f'{model_path}/model_90.pth'))
    from exc_text import read_data_clean
    test_x, test_y, test_data = read_data_clean('data/example.test')
    conlleval = []
    for index in range(len(test_data)):
        print(index / len(test_data))
        data_line = test_data[index]
        string_x = [token[0] for token in data_line]
        string_y = [token[1] for token in data_line]
        train_x_ = [string_id_x.get('BIN')
                    ] + [string_id_x[token]
                         for token in string_x] + [string_id_x.get('EOS')]
        train_x_ = torch.IntTensor(train_x_).unsqueeze(0)
        train_x_ = to_gpu(train_x_).long()
        y_predit = net.inference(train_x_)
        prediction = torch.max(F.softmax(y_predit, 2), 2)[1]
        text = list(string_x)
        prediction_label = [
            new_dict.get(i) for i in prediction[0].cpu().numpy()[1:-1]
        ]
        for i in range(len(data_line)):
            conlleval.append('{} {} {}'.format(string_x[i], string_y[i],
                                               prediction_label[i]))
    from cal_f1 import get_result
    res = get_result(conlleval)
    print(res)
Exemple #3
0
def cal_inference():
    net.eval()
    # net.load_state_dict(torch.load(f'{model_path}/model_86.pth'))  #最强
    net.load_state_dict(torch.load(f'{model_path}/model_80.pth'))  # 最强
    test_x, test_y, test_data = read_data_clean('data/example.test')
    test_x_matri = []
    for index in range(len(test_data)):
        print(index)
        test_x_matri.append(np.load(f'data/test_npy/{index}.npy'))

    test_data_wait_load = TextLoader(test_data, test_x_matri)
    test_loader = DataLoader(test_data_wait_load,
                             batch_size=1,
                             shuffle=False,
                             collate_fn=collate)
    conlleval = []
    for index, batch in enumerate(test_loader):
        print(index / len(test_data))
        data_line = test_data[index]
        string_x = [token[0] for token in data_line]
        string_y = [token[1] for token in data_line]
        x, y, input_lengths = parse_batch(batch)
        tag_seq = net.inference(x)
        prediction_label = [new_dict.get(i) for i in tag_seq[1:-1]]
        for i in range(len(data_line)):
            conlleval.append('{} {} {}'.format(string_x[i], string_y[i],
                                               prediction_label[i]))

    res = get_result(conlleval)
    print(res)
    net.train()
def create_vector():
    from exc_text import read_data_clean, read_data

    test_x, test_y, test_data = read_data_clean('data/example.test')
    for i in range(len(test_data)):
        data = test_x[i]
        data = ['BIN'] + data + ['EOS']
        target_data = get_bert_vector(data)
        np.save(f'data/test_npy/{i}', target_data)
        print(i / len(test_data))
        for Linear in self.Linears:
            outputs = F.relu(Linear(outputs))
        outputs = self.last(outputs)
        score, tag_seq = self.CRF_layer(outputs)
        return tag_seq


net = NERModel().to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=0.005)
criterion = torch.nn.CrossEntropyLoss()

collate = TextCollate()

from exc_text import read_data_clean

test_x, test_y, test_data = read_data_clean('data/example.test')


def val(time):
    net.eval()
    test_data_wait_load = TextLoader(test_data)
    test_loader = DataLoader(test_data_wait_load,
                             batch_size=1,
                             shuffle=False,
                             collate_fn=collate)
    acc = 0
    conlleval = []
    for index, batch in enumerate(test_loader):
        data_line = test_data[index]
        string_x = [token[0] for token in data_line]
        string_y = [token[1] for token in data_line]