def test_secondary_eclipse(): u1 = np.array([0.3, 0.2]) lc1 = LimbDarkLightCurve(u1) u2 = np.array([0.4, 0.1]) lc2 = LimbDarkLightCurve(u1) s = 0.3 ror = 0.08 f = ror**2 * s lc = SecondaryEclipseLightCurve(u1, u2, s) t = np.linspace(-6.435, 10.4934, 5000) orbit1 = KeplerianOrbit(period=1.543, t0=-0.123) orbit2 = KeplerianOrbit( period=orbit1.period, t0=orbit1.t0 + 0.5 * orbit1.period, r_star=ror, m_star=1.0, ) y1 = lc1.get_light_curve(orbit=orbit1, r=ror, t=t).eval() y2 = lc2.get_light_curve(orbit=orbit2, r=1.0, t=t).eval() y = lc.get_light_curve(orbit=orbit1, r=ror, t=t).eval() y_expect = (y1 + f * y2) / (1 + f) assert np.allclose(y_expect, y, atol=5e-6)
def test_estimate_minimum_mass(seed=9502): np.random.seed(seed) t = np.sort(np.random.uniform(0, 10, 500)) period = 2.345 t0 = 0.5 orbit = KeplerianOrbit(period=period, t0=t0, m_planet=0.01, incl=0.8) y = orbit.get_radial_velocity(t).eval() m1 = (orbit.m_planet * orbit.sin_incl).eval() m2 = estimate_minimum_mass(period, t, y).to(u.M_sun).value m3 = estimate_minimum_mass(period, t, y, t0s=t0).to(u.M_sun).value assert np.abs((m1 - m2) / m1) < 0.01 assert np.abs((m1 - m3) / m1) < 0.01
def test_in_transit(): t = np.linspace(-20, 20, 1000) m_planet = np.array([0.3, 0.5]) m_star = 1.45 orbit = KeplerianOrbit( m_star=m_star, r_star=1.5, t0=np.array([0.5, 17.4]), period=np.array([10.0, 5.3]), ecc=np.array([0.1, 0.8]), omega=np.array([0.5, 1.3]), m_planet=m_planet, ) u = np.array([0.2, 0.3, 0.1, 0.5]) r = np.array([0.1, 0.01]) lc = LimbDarkLightCurve(u) model1 = lc.get_light_curve(r=r, orbit=orbit, t=t) model2 = lc.get_light_curve(r=r, orbit=orbit, t=t, use_in_transit=False) vals = theano.function([], [model1, model2])() utt.assert_allclose(*vals) model1 = lc.get_light_curve(r=r, orbit=orbit, t=t, texp=0.1) model2 = lc.get_light_curve(r=r, orbit=orbit, t=t, texp=0.1, use_in_transit=False) vals = theano.function([], [model1, model2])() utt.assert_allclose(*vals)
def test_simple_light_curve_compare_kepler(): t = np.linspace(0.0, 1, 1000) # We use a long period, because at short periods there is a big difference # between a circular orbit and an object moving on a straight line. period = 1000 t0 = 0.5 r = 0.01 r_star = 1 b = 1 - r / r_star * 3 star = LimbDarkLightCurve(0.2, 0.3) orbit_keplerian = KeplerianOrbit(period=period, t0=t0, b=b, r_star=r_star, m_star=1) duration = (period / np.pi) * np.arcsin( ((r_star + r)**2 - (b * r_star)**2)**0.5 / orbit_keplerian.a).eval() lc_keplerian = star.get_light_curve(orbit=orbit_keplerian, r=r, t=t) orbit_simple1 = SimpleTransitOrbit( period=period, t0=t0, b=b, duration=duration, r_star=r_star, ror=r / r_star, ) lc_simple1 = star.get_light_curve(orbit=orbit_simple1, r=r, t=t) # Should look similar to Keplerian orbit assert np.allclose(lc_keplerian.eval(), lc_simple1.eval(), rtol=0.001)
def test_contact_bug(): orbit = KeplerianOrbit(period=3.456, ecc=0.6, omega=-1.5) t = np.linspace(-0.1, 0.1, 1000) u = [0.3, 0.2] y1 = (LimbDarkLightCurve(u[0], u[1]).get_light_curve(orbit=orbit, r=0.1, t=t, texp=0.02).eval()) y2 = (LimbDarkLightCurve(u[0], u[1]).get_light_curve( orbit=orbit, r=0.1, t=t, texp=0.02, use_in_transit=False).eval()) assert np.allclose(y1, y2)
def test_mass_units(): P_earth = 365.256 Tper_earth = 2454115.5208333 inclination_earth = np.radians(45.0) orbit1 = KeplerianOrbit( period=P_earth, t_periastron=Tper_earth, incl=inclination_earth, m_planet=units.with_unit(1.0, u.M_earth), ) orbit2 = KeplerianOrbit( period=P_earth, t_periastron=Tper_earth, incl=inclination_earth, m_planet=1.0, m_planet_units=u.M_earth, ) t = np.linspace(Tper_earth, Tper_earth + 1000, 1000) rv1 = orbit1.get_radial_velocity(t).eval() rv_diff = np.max(rv1) - np.min(rv1) assert rv_diff < 1.0, "with_unit" rv2 = orbit2.get_radial_velocity(t).eval() rv_diff = np.max(rv2) - np.min(rv2) assert rv_diff < 1.0, "m_planet_units" np.testing.assert_allclose(rv2, rv1)
def rv_injection_worker(task): logK, logP, t0, sini, t_observed, gammadot_limit = task ecc = 0 if use_exoplanet: # slow, and bringing a machine-gun to a knife-fight orbit = KeplerianOrbit(period=np.exp(logP), b=0, t0=t0, r_star=RSTAR, m_star=MSTAR) rv = orbit.get_radial_velocity(t_observed, K=np.exp(logK), output_units=u.m / u.s) _rv = rv.eval() * sini else: if ecc != 0: raise NotImplementedError # analytic solution for circular orbits (from radvel.kepler) per = np.exp(logP) tp = t0 om = 0 k = np.exp(logK) m = 2 * np.pi * (((t_observed - tp) / per) - np.floor( (t_observed - tp) / per)) _rv = k * sini * np.cos(m + om) coef = polyfit(t_observed, _rv, 1) slope = coef[0] isdetectable = np.abs(slope) > gammadot_limit.to(u.m / u.s / u.day).value return slope, isdetectable
def test_small_star(): pytest.importorskip("batman.transitmodel") from batman.transitmodel import TransitModel, TransitParams u_star = [0.2, 0.1] r = 0.04221468 m_star = 0.151 r_star = 0.189 period = 0.4626413 t0 = 0.2 b = 0.5 ecc = 0.1 omega = 0.1 t = np.linspace(0, period, 500) r_pl = r * r_star orbit = KeplerianOrbit( r_star=r_star, m_star=m_star, period=period, t0=t0, b=b, ecc=ecc, omega=omega, ) a = orbit.a.eval() incl = orbit.incl.eval() lc = LimbDarkLightCurve(u_star[0], u_star[1]) model1 = lc.get_light_curve(r=r_pl, orbit=orbit, t=t) model2 = lc.get_light_curve(r=r_pl, orbit=orbit, t=t, use_in_transit=False) vals = theano.function([], [model1, model2])() assert np.allclose(*vals) params = TransitParams() params.t0 = t0 params.per = period params.rp = r params.a = a / r_star params.inc = np.degrees(incl) params.ecc = ecc params.w = np.degrees(omega) params.u = u_star params.limb_dark = "quadratic" model = TransitModel(params, t) flux = model.light_curve(params) assert np.allclose(vals[0][:, 0], flux - 1)
def test_variable_texp(): t = np.linspace(-20, 20, 1000) m_planet = np.array([0.3, 0.5]) m_star = 1.45 orbit = KeplerianOrbit( m_star=m_star, r_star=1.5, t0=np.array([0.5, 17.4]), period=np.array([10.0, 5.3]), ecc=np.array([0.1, 0.8]), omega=np.array([0.5, 1.3]), m_planet=m_planet, ) u = np.array([0.2, 0.3]) r = np.array([0.1, 0.01]) texp0 = 0.1 lc = LimbDarkLightCurve(u[0], u[1]) model1 = lc.get_light_curve(r=r, orbit=orbit, t=t, texp=texp0, use_in_transit=False) model2 = lc.get_light_curve( r=r, orbit=orbit, t=t, use_in_transit=False, texp=texp0 + np.zeros_like(t), ) vals = theano.function([], [model1, model2])() assert np.allclose(*vals) model1 = lc.get_light_curve(r=r, orbit=orbit, t=t, texp=texp0) model2 = lc.get_light_curve( r=r, orbit=orbit, t=t, texp=texp0 + np.zeros_like(t), use_in_transit=False, ) vals = theano.function([], [model1, model2])() assert np.allclose(*vals)