Exemple #1
0
    def __init__(self, layer_number, FLAGS, env, sess, agent_params):
        self.layer_number = layer_number
        self.FLAGS = FLAGS
        self.sess = sess

        # Set time limit for each layer.  If agent uses only 1 layer, time limit is the max number of low-level actions allowed in the episode (i.e, env.max_actions).
        if FLAGS.layers > 1:
            self.time_limit = FLAGS.time_scale
        else:
            self.time_limit = env.max_actions

        self.current_state = None
        self.goal = None

        # Initialize Replay Buffer.  Below variables determine size of replay buffer.

        # Ceiling on buffer size
        self.buffer_size_ceiling = 10**7

        # Number of full episodes stored in replay buffer
        self.episodes_to_store = agent_params["episodes_to_store"]

        # Set number of transitions to serve as replay goals during goal replay
        self.num_replay_goals = 3

        # Number of the transitions created for each attempt (i.e, action replay + goal replay + subgoal testing)
        if self.layer_number == 0:
            self.trans_per_attempt = (1 + self.num_replay_goals) * self.time_limit
        else:
            self.trans_per_attempt = (1 + self.num_replay_goals) * self.time_limit + int(self.time_limit/3)

        # Buffer size = transitions per attempt * # attempts per episode * num of episodes stored
        self.buffer_size = min(self.trans_per_attempt * self.time_limit**(self.FLAGS.layers-1 - self.layer_number) * self.episodes_to_store, self.buffer_size_ceiling)

        # self.buffer_size = 10000000
        self.batch_size = 1024
        self.replay_buffer = ExperienceBuffer(self.buffer_size, self.batch_size)

        # Create buffer to store not yet finalized goal replay transitions
        self.temp_goal_replay_storage = []

        # Initialize actor and critic networks
        self.actor = Actor(sess, env, self.batch_size, self.layer_number, FLAGS)
        self.critic = Critic(sess, env, self.layer_number, FLAGS)

        # Parameter determines degree of noise added to actions during training
        # self.noise_perc = noise_perc
        if self.layer_number == 0:
            self.noise_perc = agent_params["atomic_noise"]
        else:
            self.noise_perc = agent_params["subgoal_noise"]

        # Create flag to indicate when layer has ran out of attempts to achieve goal.  This will be important for subgoal testing
        self.maxed_out = False

        self.subgoal_penalty = agent_params["subgoal_penalty"]
    def __init__(self,
                 network,
                 sess,
                 enabled=config.is_training,
                 scope=config.dir_name,
                 discount_factor=config.discount_factor,
                 batch_size=config.batch_size,
                 max_buffer_size=config.max_buffer_size,
                 tau=config.tau):
        super(DoubleQNetworkTrainer, self).__init__(discount_factor)
        self._network = network
        self.sess = sess
        self._batch_size = batch_size
        self._tau = tau

        if enabled:
            self._target_network = Network(network.shape,
                                           sess,
                                           load_model=False)
            self._target_ops = self._update_target_graph(
                tf.trainable_variables(scope=scope))

        self._experience_buffer = ExperienceBuffer(max_buffer_size)
Exemple #3
0
class Layer():
    def __init__(self, layer_number, FLAGS, env, sess, agent_params):
        self.layer_number = layer_number
        self.FLAGS = FLAGS
        self.sess = sess

        # Set time limit for each layer.  If agent uses only 1 layer, time limit is the max number of low-level actions allowed in the episode (i.e, env.max_actions).
        if FLAGS.layers > 1:
            self.time_limit = FLAGS.time_scale
        else:
            self.time_limit = env.max_actions

        self.current_state = None
        self.goal = None

        # Initialize Replay Buffer.  Below variables determine size of replay buffer.

        # Ceiling on buffer size
        self.buffer_size_ceiling = 10**7

        # Number of full episodes stored in replay buffer
        self.episodes_to_store = agent_params["episodes_to_store"]

        # Set number of transitions to serve as replay goals during goal replay
        self.num_replay_goals = 3

        # Number of the transitions created for each attempt (i.e, action replay + goal replay + subgoal testing)
        if self.layer_number == 0:
            self.trans_per_attempt = (1 + self.num_replay_goals) * self.time_limit
        else:
            self.trans_per_attempt = (1 + self.num_replay_goals) * self.time_limit + int(self.time_limit/3)

        # Buffer size = transitions per attempt * # attempts per episode * num of episodes stored
        self.buffer_size = min(self.trans_per_attempt * self.time_limit**(self.FLAGS.layers-1 - self.layer_number) * self.episodes_to_store, self.buffer_size_ceiling)

        # self.buffer_size = 10000000
        self.batch_size = 1024
        self.replay_buffer = ExperienceBuffer(self.buffer_size, self.batch_size)

        # Create buffer to store not yet finalized goal replay transitions
        self.temp_goal_replay_storage = []

        # Initialize actor and critic networks
        self.actor = Actor(sess, env, self.batch_size, self.layer_number, FLAGS)
        self.critic = Critic(sess, env, self.layer_number, FLAGS)

        # Parameter determines degree of noise added to actions during training
        # self.noise_perc = noise_perc
        if self.layer_number == 0:
            self.noise_perc = agent_params["atomic_noise"]
        else:
            self.noise_perc = agent_params["subgoal_noise"]

        # Create flag to indicate when layer has ran out of attempts to achieve goal.  This will be important for subgoal testing
        self.maxed_out = False

        self.subgoal_penalty = agent_params["subgoal_penalty"]



    # Add noise to provided action
    def add_noise(self,action, env):

        # Noise added will be percentage of range
        if self.layer_number == 0:
            action_bounds = env.action_bounds
            action_offset = env.action_offset
        else:
            action_bounds = env.subgoal_bounds_symmetric
            action_offset = env.subgoal_bounds_offset

        assert len(action) == len(action_bounds), "Action bounds must have same dimension as action"
        assert len(action) == len(self.noise_perc), "Noise percentage vector must have same dimension as action"

        # Add noise to action and ensure remains within bounds
        for i in range(len(action)):
            action[i] += np.random.normal(0,self.noise_perc[i] * action_bounds[i])

            action[i] = max(min(action[i], action_bounds[i]+action_offset[i]), -action_bounds[i]+action_offset[i])

        return action


    # Select random action
    def get_random_action(self, env):

        if self.layer_number == 0:
            action = np.zeros((env.action_dim))
        else:
            action = np.zeros((env.subgoal_dim))

        # Each dimension of random action should take some value in the dimension's range
        for i in range(len(action)):
            if self.layer_number == 0:
                action[i] = np.random.uniform(-env.action_bounds[i] + env.action_offset[i], env.action_bounds[i] + env.action_offset[i])
            else:
                action[i] = np.random.uniform(env.subgoal_bounds[i][0],env.subgoal_bounds[i][1])

        return action


    # Function selects action using an epsilon-greedy policy
    def choose_action(self,agent, env, subgoal_test):

        # If testing mode or testing subgoals, action is output of actor network without noise
        if agent.FLAGS.test or subgoal_test:

            # return self.actor.get_action(np.reshape(self.current_state,(1,len(self.current_state))), np.reshape(self.goal,(1,len(self.goal))))[0], "Policy", subgoal_test
            return self.get_actions(obs['observation'], obs['achieved_goal'], obs['desired_goal'])
        else:

            if np.random.random_sample() > 0.2:
                # Choose noisy action
                action = self.add_noise(self.actor.get_action(np.reshape(self.current_state,(1,len(self.current_state))), np.reshape(self.goal,(1,len(self.goal))))[0],env)

                action_type = "Noisy Policy"

            # Otherwise, choose random action
            else:
                action = self.get_random_action(env)

                action_type = "Random"

            # Determine whether to test upcoming subgoal
            if np.random.random_sample() < agent.subgoal_test_perc:
                next_subgoal_test = True
            else:
                next_subgoal_test = False



            return action, action_type, next_subgoal_test


    # Create action replay transition by evaluating hindsight action given original goal
    def perform_action_replay(self, hindsight_action, next_state, goal_status):

        # Determine reward (0 if goal achieved, -1 otherwise) and finished boolean.  The finished boolean is used for determining the target for Q-value updates
        if goal_status[self.layer_number]:
            reward = 0
            finished = True
        else:
            reward = -1
            finished = False

        # Transition will take the form [old state, hindsight_action, reward, next_state, goal, terminate boolean, None]
        transition = [self.current_state, hindsight_action, reward, next_state, self.goal, finished, None]
        # print("AR Trans: ", transition)

        # Add action replay transition to layer's replay buffer
        self.replay_buffer.add(np.copy(transition))


    # Create initial goal replay transitions
    def create_prelim_goal_replay_trans(self, hindsight_action, next_state, env, total_layers):

        # Create transition evaluating hindsight action for some goal to be determined in future.  Goal will be ultimately be selected from states layer has traversed through.  Transition will be in the form [old state, hindsight action, reward = None, next state, goal = None, finished = None, next state projeted to subgoal/end goal space]

        if self.layer_number == total_layers - 1:
            hindsight_goal = env.project_state_to_end_goal(env.sim, next_state)
        else:
            hindsight_goal = env.project_state_to_subgoal(env.sim, next_state)

        transition = [self.current_state, hindsight_action, None, next_state, None, None, hindsight_goal]
        # print("\nPrelim GR A: ", transition)

        self.temp_goal_replay_storage.append(np.copy(transition))

        """
        # Designer can create some additional goal replay transitions.  For instance, higher level transitions can be replayed with the subgoal achieved in hindsight as the original goal.
        if self.layer_number > 0:
            transition_b = [self.current_state, hindsight_action, 0, next_state, hindsight_goal, True, None]
            # print("\nGoal Replay B: ", transition_b)
            self.replay_buffer.add(np.copy(transition_b))
        """





    # Return reward given provided goal and goal achieved in hindsight
    def get_reward(self,new_goal, hindsight_goal, goal_thresholds):

        assert len(new_goal) == len(hindsight_goal) == len(goal_thresholds), "Goal, hindsight goal, and goal thresholds do not have same dimensions"

        # If the difference in any dimension is greater than threshold, goal not achieved
        for i in range(len(new_goal)):
            if np.absolute(new_goal[i]-hindsight_goal[i]) > goal_thresholds[i]:
                return -1

        # Else goal is achieved
        return 0



    # Finalize goal replay by filling in goal, reward, and finished boolean for the preliminary goal replay transitions created before
    def finalize_goal_replay(self,goal_thresholds):

        # Choose transitions to serve as goals during goal replay.  The last transition will always be used
        num_trans = len(self.temp_goal_replay_storage)

        num_replay_goals = self.num_replay_goals
        # If fewer transitions that ordinary number of replay goals, lower number of replay goals
        if num_trans < self.num_replay_goals:
            num_replay_goals = num_trans

        """
        if self.layer_number == 1:
            print("\n\nPerforming Goal Replay\n\n")
            print("Num Trans: ", num_trans, ", Num Replay Goals: ", num_replay_goals)
        """

        indices = np.zeros((num_replay_goals))
        indices[:num_replay_goals-1] = np.random.randint(num_trans,size=num_replay_goals-1)
        indices[num_replay_goals-1] = num_trans - 1
        indices = np.sort(indices)

        # if self.layer_number == 1:
            # print("Selected Indices: ", indices)

        # For each selected transition, update the goal dimension of the selected transition and all prior transitions by using the next state of the selected transition as the new goal.  Given new goal, update the reward and finished boolean as well.
        for i in range(len(indices)):
            trans_copy = np.copy(self.temp_goal_replay_storage)

            # if self.layer_number == 1:
                # print("GR Iteration: %d, Index %d" % (i, indices[i]))

            new_goal = trans_copy[int(indices[i])][6]
            # for index in range(int(indices[i])+1):
            for index in range(num_trans):
                # Update goal to new goal
                trans_copy[index][4] = new_goal

                # Update reward
                trans_copy[index][2] = self.get_reward(new_goal, trans_copy[index][6], goal_thresholds)

                # Update finished boolean based on reward
                if trans_copy[index][2] == 0:
                    trans_copy[index][5] = True
                else:
                    trans_copy[index][5] = False

                # Add finished transition to replay buffer
                # if self.layer_number == 1:
                    # print("\nNew Goal: ", new_goal)
                    # print("Upd Trans %d: " % index, trans_copy[index])

                self.replay_buffer.add(trans_copy[index])


        # Clear storage for preliminary goal replay transitions at end of goal replay
        self.temp_goal_replay_storage = []


    # Create transition penalizing subgoal if necessary.  The target Q-value when this transition is used will ignore next state as the finished boolena = True.  Change the finished boolean to False, if you would like the subgoal penalty to depend on the next state.
    def penalize_subgoal(self, subgoal, next_state, high_level_goal_achieved):

        transition = [self.current_state, subgoal, self.subgoal_penalty, next_state, self.goal, True, None]

        self.replay_buffer.add(np.copy(transition))



    # Determine whether layer is finished training
    def return_to_higher_level(self, max_lay_achieved, agent, env, attempts_made):

        # Return to higher level if (i) a higher level goal has been reached, (ii) maxed out episode time steps (env.max_actions), (iii) not testing and layer is out of attempts, and (iv) testing, layer is not the highest level, and layer is out of attempts.  NOTE: during testing, highest level will continue to ouput subgoals until either (i) the maximum number of episdoe time steps or (ii) the end goal has been achieved.

        # Return to previous level when any higher level goal achieved.  NOTE: if not testing and agent achieves end goal, training will continue until out of time (i.e., out of time steps or highest level runs out of attempts).  This will allow agent to experience being around the end goal.
        if max_lay_achieved is not None and max_lay_achieved >= self.layer_number:
            return True

        # Return when out of time
        elif agent.steps_taken >= env.max_actions:
            return True

        # Return when layer has maxed out attempts
        elif not agent.FLAGS.test and attempts_made >= self.time_limit:
            return True

        # NOTE: During testing, agent will have env.max_action attempts to achieve goal
        elif agent.FLAGS.test and self.layer_number < agent.FLAGS.layers-1 and attempts_made >= self.time_limit:
            return True

        else:
            return False


    # Learn to achieve goals with actions belonging to appropriate time scale.  
    # "goal_array" contains the goal states for the current layer and all higher layers
    def train(self, agent, env, subgoal_test = False, episode_num = None):

        # print("\nTraining Layer %d" % self.layer_number)

        # Set layer's current state and new goal state
        self.goal = agent.goal_array[self.layer_number]
        self.current_state = agent.current_state

        # Reset flag indicating whether layer has ran out of attempts.  This will be used for subgoal testing.
        self.maxed_out = False

        # Display all subgoals if visualizing training and current layer is bottom layer
        if self.layer_number == 0 and agent.FLAGS.show and agent.FLAGS.layers > 1:
            env.display_subgoals(agent.goal_array)
            # env.sim.data.mocap_pos[3] = env.project_state_to_end_goal(env.sim,self.current_state)
            # print("Subgoal Pos: ", env.sim.data.mocap_pos[1])

        # Current layer has self.time_limit attempts to each its goal state.
        attempts_made = 0

        while True:

            # Select action to achieve goal state using epsilon-greedy policy or greedy policy if in test mode
            action, action_type, next_subgoal_test = self.choose_action(agent, env, subgoal_test)

            """
            if self.layer_number == agent.FLAGS.layers - 1:
                # print("\nLayer %d Action: " % self.layer_number, action)
                print("Q-Value: ", self.critic.get_Q_value(np.reshape(self.current_state,(1,len(self.current_state))), np.reshape(self.goal,(1,len(self.goal))), np.reshape(action,(1,len(action)))))
            """

            # If next layer is not bottom level, propose subgoal for next layer to achieve and determine whether that subgoal should be tested
            if self.layer_number > 0:

                agent.goal_array[self.layer_number - 1] = action ## 액션을 그냥 골로 만들어줌?

                goal_status, max_lay_achieved = agent.layers[self.layer_number - 1].train(agent, env, next_subgoal_test, episode_num)

            # If layer is bottom level, execute low-level action
            else:
                next_state = env.execute_action(action)

                # Increment steps taken
                agent.steps_taken += 1
                # print("Num Actions Taken: ", agent.steps_taken)

                if agent.steps_taken >= env.max_actions:
                    print("Out of actions (Steps: %d)" % agent.steps_taken)

                agent.current_state = next_state

                # Determine whether any of the goals from any layer was achieved and, if applicable, the highest layer whose goal was achieved
                goal_status, max_lay_achieved = agent.check_goals(env)

            attempts_made += 1

            # Print if goal from current layer as been achieved
            if goal_status[self.layer_number]:
                if self.layer_number < agent.FLAGS.layers - 1:
                    print("SUBGOAL ACHIEVED")
                print("\nEpisode %d, Layer %d, Attempt %d Goal Achieved" % (episode_num, self.layer_number, attempts_made))
                print("Goal: ", self.goal)
                if self.layer_number == agent.FLAGS.layers - 1:
                    print("Hindsight Goal: ", env.project_state_to_end_goal(env.sim, agent.current_state))
                else:
                    print("Hindsight Goal: ", env.project_state_to_subgoal(env.sim, agent.current_state))

            # Perform hindsight learning using action actually executed (low-level action or hindsight subgoal)
            if self.layer_number == 0:
                hindsight_action = action
            else:
                # If subgoal action was achieved by layer below, use this as hindsight action
                if goal_status[self.layer_number-1]:
                    hindsight_action = action
                # Otherwise, use subgoal that was achieved in hindsight
                else:
                    hindsight_action = env.project_state_to_subgoal(env.sim, agent.current_state)


            # Next, create hindsight transitions if not testing
            if not agent.FLAGS.test:

                # Create action replay transition by evaluating hindsight action given current goal
                self.perform_action_replay(hindsight_action, agent.current_state, goal_status)

                # Create preliminary goal replay transitions.  The goal and reward in these transitions will be finalized when this layer has run out of attempts or the goal has been achieved.
                self.create_prelim_goal_replay_trans(hindsight_action, agent.current_state, env, agent.FLAGS.layers)


                # Penalize subgoals if subgoal testing and subgoal was missed by lower layers after maximum number of attempts
                if self.layer_number > 0 and next_subgoal_test and agent.layers[self.layer_number-1].maxed_out:
                    self.penalize_subgoal(action, agent.current_state, goal_status[self.layer_number])


            # Print summary of transition
            if agent.FLAGS.verbose:

                print("\nEpisode %d, Training Layer %d, Attempt %d" % (episode_num, self.layer_number,attempts_made))
                # print("Goal Array: ", agent.goal_array, "Max Lay Achieved: ", max_lay_achieved)
                print("Old State: ", self.current_state)
                print("Hindsight Action: ", hindsight_action)
                print("Original Action: ", action)
                print("Next State: ", agent.current_state)
                print("Goal: ", self.goal)
                if self.layer_number == agent.FLAGS.layers - 1:
                    print("Hindsight Goal: ", env.project_state_to_end_goal(env.sim, agent.current_state))
                else:
                    print("Hindsight Goal: ", env.project_state_to_subgoal(env.sim, agent.current_state))
                print("Goal Status: ", goal_status, "\n")
                print("All Goals: ", agent.goal_array)



            # Update state of current layer
            self.current_state = agent.current_state

            # Return to previous level to receive next subgoal if applicable
            # if self.return_to_higher_level(max_lay_achieved, agent, env, attempts_made):
            if (max_lay_achieved is not None and max_lay_achieved >= self.layer_number) or agent.steps_taken >= env.max_actions or attempts_made >= self.time_limit:

                if self.layer_number == agent.FLAGS.layers-1:
                    print("HL Attempts Made: ", attempts_made)

                # If goal was not achieved after max number of attempts, set maxed out flag to true
                if attempts_made >= self.time_limit and not goal_status[self.layer_number]:
                    self.maxed_out = True
                    # print("Layer %d Out of Attempts" % self.layer_number)

                # If not testing, finish goal replay by filling in missing goal and reward values before returning to prior level.
                if not agent.FLAGS.test:
                    if self.layer_number == agent.FLAGS.layers - 1:
                        goal_thresholds = env.end_goal_thresholds
                    else:
                        goal_thresholds = env.subgoal_thresholds

                    self.finalize_goal_replay(goal_thresholds)

                # Under certain circumstances, the highest layer will not seek a new end goal
                if self.return_to_higher_level(max_lay_achieved, agent, env, attempts_made):
                    return goal_status, max_lay_achieved



    # Update actor and critic networks
    def learn(self, num_updates):

        for _ in range(num_updates):
            # Update weights of non-target networks
            if self.replay_buffer.size >= self.batch_size:
                old_states, actions, rewards, new_states, goals, is_terminals = self.replay_buffer.get_batch()


                self.critic.update(old_states, actions, rewards, new_states, goals, self.actor.get_action(new_states,goals), is_terminals)
                action_derivs = self.critic.get_gradients(old_states, goals, self.actor.get_action(old_states, goals))
                self.actor.update(old_states, goals, action_derivs)

        """
Exemple #4
0
def train(sess, env, actor, actor_target, critic, critic_target):

    # Arguments
    init_episode = args['init_episode']
    epsilon_rate = args['epsilon_rate']
    max_episodes = args['max_episodes']
    max_steps = args['max_steps']
    batch_size = args['batch_size']
    buffer_size = args['buffer_size']
    gamma = args['gamma']
    seed = args['seed']
    tau = args['tau']

    # Restore model or run init tensorflow
    saver = tf.train.Saver()
    sess.run(tf.global_variables_initializer(
    )) if init_episode == 0 else saver.restore(
        sess,
        os.path.join(args['resources'], "network") + "/" + args['file'] +
        "_model")

    # Add tensorboard visualization
    # $ tensorboard --logdir=./resources/logdir
    # https://localghost:6006
    if args['tensorboard']:
        logdir = os.path.join(args['resources'], 'logdir')
        if not os.path.exists(logdir):
            os.mkdir(logdir)
        tf.summary.FileWriter(logdir, sess.graph)

    # Init experience buffer
    buffer = ExperienceBuffer(buffer_size, seed)

    counter = 0
    epsilon = 1.0
    transfer_network_params_every = 500
    relaunch_torcs_every = 1
    save_networks_every = 50
    epsilon_decay = calculate_epsilon_decay(max_episodes, epsilon_rate)

    ###############################################################

    for i in range(init_episode, max_episodes):

        # relaunch TORCS every N episodes due to a memory leak error
        ob = env.reset(relaunch=True) if np.mod(
            i, relaunch_torcs_every) == 0 else env.reset()

        # Init reward counter and Q max value.
        reward_total = 0
        q_max = 0

        # Decrease noise every episode
        # epsilon -= epsilon_decay

        # Get enviroment state
        state_t0 = np.hstack(
            (ob.angle, ob.track, ob.trackPos, ob.speedX, ob.speedY, ob.speedZ,
             ob.wheelSpinVel / 100.0, ob.rpm))

        ###############################################################

        for j in range(max_steps):

            t0 = time()
            counter += 1

            # Action noise: decrease noise (epsilon) for each episode to get better results
            action = actor.predict(np.reshape(state_t0, (1, actor.state_size)))
            action[0, :] += noise(x=action[0, :], epsilon_decay=epsilon)

            # The first 5 episodes full acceleration.
            if (i < 10):
                action[0][0] = 0.0
                action[0][1] = 1.0
                action[0][2] = 0.0

            # Run step and get data for enviroment.
            ob, reward, fin, info = env.step(action[0])

            # Update target networks
            if ((counter % transfer_network_params_every) == 0):
                transfer_network_params(sess, actor, actor_target, tau)
                transfer_network_params(sess, critic, critic_target, tau)
                print(
                    "\n***************************************************************************************"
                )
                print(
                    "---------------------------- UPDATE TARGET NETWORK PARAMS -----------------------------"
                )
                print(
                    "*************************************{:2.2E}**************************************************\n"
                    .format(time() - t0))
            else:
                state_t1 = np.hstack(
                    (ob.angle, ob.track, ob.trackPos, ob.speedX, ob.speedY,
                     ob.speedZ, ob.wheelSpinVel / 100.0, ob.rpm))

                # Add new experience to buffer.
                buffer.append(np.reshape(state_t0, (actor.state_size, )),
                              np.reshape(action, (actor.action_size, )),
                              reward, fin,
                              np.reshape(state_t1, (actor.state_size, )))

                if len(buffer) > batch_size:
                    states_t0_batch, actions_batch, rewards_batch, fin_batch, states_t1_batch = buffer.get_batch(
                        batch_size)

                    #***********************************************#
                    ## Calculate target_q for train critic network ##
                    #***********************************************#

                    # Predict target q; predict target_y actor & target_y critic and combine both.
                    actor_q_target = actor_target.predict(states_t1_batch)
                    _critic_q_target = critic_target.predict(
                        states_t1_batch, actor_q_target)

                    # Calculate target q with gamma and rewards: Bellman ecuation.
                    critic_q_target = [
                        x if fin_batch[i] else
                        (x + gamma * _critic_q_target[i])
                        for i, x in enumerate(rewards_batch)
                    ]

                    # Train critic network with targets Q values.
                    critic_q_predicted, _ = critic.train(
                        states_t0_batch, actions_batch,
                        np.reshape(critic_q_target, (batch_size, 1)))

                    # Get max Q value predicted by critic.
                    q_max += np.amax(critic_q_predicted)

                    #*****************************************************************#
                    ## Calculate Q actions and get gradients for train actor network ##
                    #*****************************************************************#

                    # Train actor network with critic gradients.
                    actor_action_predict = actor.predict(states_t0_batch)
                    gradients = critic.calculate_gradients(
                        states_t0_batch, actor_action_predict)
                    actor.train(states_t0_batch, gradients[0])

                    # Compute actor loss: MSE
                    # _actor_action_predict = actor.predict(states_t0_batch)
                    # actor_loss = actor.calculate_loss(actor_action_predict, _actor_action_predict)

                    # print("a-loss: ", actor_loss, "c-loss", critic_loss)

                state_t0 = state_t1
                reward_total += reward

                print(
                    '| Buffer {:7} | Episode: {:5d} | Step: {:5d}  | Stel: {:2.2f}\t| Accel: {:2.2f}\t| Brake: {:2.2f}\t| Reward: {:6d} | Qmax: {:6d} | Time: {:2.2E}'
                    .format(len(buffer), i, j, action[0][0], action[0][1],
                            action[0][2], int(reward_total),
                            int(q_max / float(j + 1)),
                            time() - t0))

                ###############################################################

                if fin:
                    print('| Reward: {:d} | Episode: {:d} | Q-max: {:.4f}'.
                          format(int(reward_total), i, (q_max / float(j))))
                    with open(
                            os.path.join(args['resources'], "data") + "/" +
                            args['file'] + "_train.txt", "a") as f:
                        f.write(
                            str(i) + " " + str(j) + " " + str(reward_total) +
                            " " + str(q_max / float(j + 1)) + "\n")
                    break

        ###############################################################

        if ((i % save_networks_every) == 0 and i > 1):
            saver.save(
                sess,
                os.path.join(args['resources'], "network") + "/" +
                args['file'] + "_model")
            print(
                "--------------------------------- SAVED MODEL ------------------------------------"
            )
class DoubleQNetworkTrainer(Trainer):
    def __init__(self,
                 network,
                 sess,
                 enabled=config.is_training,
                 scope=config.dir_name,
                 discount_factor=config.discount_factor,
                 batch_size=config.batch_size,
                 max_buffer_size=config.max_buffer_size,
                 tau=config.tau):
        super(DoubleQNetworkTrainer, self).__init__(discount_factor)
        self._network = network
        self.sess = sess
        self._batch_size = batch_size
        self._tau = tau

        if enabled:
            self._target_network = Network(network.shape,
                                           sess,
                                           load_model=False)
            self._target_ops = self._update_target_graph(
                tf.trainable_variables(scope=scope))

        self._experience_buffer = ExperienceBuffer(max_buffer_size)

    def _update_target_graph(self, tf_vars):
        total_vars = len(tf_vars)
        op_holder = []
        for (idx, var) in enumerate(tf_vars[0:total_vars // 2]):
            op_holder.append(tf_vars[idx + total_vars // 2].assign(
                (var.value() * self._tau) +
                ((1 - self._tau) * tf_vars[idx + total_vars // 2].value())))

        return op_holder

    def _update_target(self):
        for op in self._target_ops:
            self.sess.run(op)

    def train_network(self, state, action, reward, next_state, is_done):
        self._experience_buffer.add(
            np.reshape(np.array([state, action, reward, next_state, is_done]),
                       [1, 5]))

        if len(self._experience_buffer) >= self._batch_size:
            train_batch = self._experience_buffer.sample(self._batch_size)
            '''
            Q1 is the best action for next state predicted from main network
            Q2 is all the actions for next state predicted from target network
            DoubleQ is the value of Q1 from Q2
            targetQ is the output from the neural network for the previous features improved
                by changing the Q using DoubleQ's value
            end_multiplier ensures that if an action caused the episode to end, then its Q
                value is only affected by the reward and not doubleQ
            '''

            Q1 = self.sess.run(self._network.predict,
                               feed_dict={
                                   self._network.layers[0]:
                                   np.vstack(train_batch[:, 3])
                               })
            Q2 = self.sess.run(self._target_network.layers[-1],
                               feed_dict={
                                   self._target_network.layers[0]:
                                   np.vstack(train_batch[:, 3])
                               })

            end_multiplier = 1 - train_batch[:, 4]

            double_q = Q2[range(self._batch_size), Q1]
            target_q = train_batch[:, 2] + (self._discount_factor * double_q *
                                            end_multiplier)

            # Update the network with our target values
            _ = self.sess.run(self._network.train_step,
                              feed_dict={
                                  self._network.layers[0]:
                                  np.vstack(train_batch[:, 0]),
                                  self._network.target_q:
                                  target_q,
                                  self._network.actions:
                                  train_batch[:, 1]
                              })

            self._update_target()
Exemple #6
0
def training(params, eparams, netsize):
    '''
    training is the main method used to train an agent
    Before running a main training loop, several objects need to be initialised
    First, a neural network is initialised based on imports from the dgn_model
    file. Then, a single agent and an environment are initialised. In this 
    training code, the agent plays against itself, but is unaware of this fact.
    
    In the training loop, the agent selects optimal actions with probability 
    epsilon (element in params), and randomises otherwise. It then observes
    transition dynamics and receives rewards for these actions. These 
    transitions are learned by the neural network provided to the agent.
    
    INPUT:
        params....A dictionary of hyperparameters
        eparams...Another dictionary of parameters determining the economic env
        netsize...the size of the two hidden layers in the neural network
            this is an important parameter that I want to present results for
            when it is being varied
    OUTPUT:
        agent...an instance of class Agent that is equipped with a trained
        neural network. agent can then be tested by calling the file testing.py
    
    '''
    Experience = collections.namedtuple(
        'Experience',
        field_names=['state', 'action', 'reward', 'done', 'new_state'])
    BATCH_SIZE = params['batch_size']
    REPLAY_SIZE = params['replay_size']
    REPLAY_START_SIZE = params['replay_start_size']
    LEARNING_RATE = params['learning_rate']
    SYNC_TARGET_FRAMES = params['sync_target_frames']
    EPSILON_DECAY_LAST_FRAME = params['epsilon_decay_last_frame']
    EPSILON_START = params['epsilon_start']
    EPSILON_FINAL = params['epsilon_final']
    nA = params['nA']
    dO_a = params['dO_a']
    FRAMES = params['frames']
    NODES = params['nodes']
    SEED = params['seed']
    PATH = params['path']
    GAMMA = params['gamma']
    A0 = eparams['a0']
    MU = eparams['mu']
    FIRMLIST = eparams['firmlist']

    NODES = netsize

    print(params)
    # PyTorch setup
    use_cuda = torch.cuda.is_available()
    device = torch.device(
        'cuda' if use_cuda else
        'cpu')  # CPU when GPU is not available <-> device agnostic

    torch.manual_seed(SEED)
    if use_cuda:
        torch.cuda.manual_seed(SEED)

    # Neural network model:
    net = Net(dO_a, nA, NODES).to(device)
    print(net)
    tgt_net = Net(dO_a, nA, NODES).to(device)  # Prediction target.
    criterion = nn.MSELoss()
    optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)
    buffer = ExperienceBuffer(REPLAY_SIZE)

    # Reinforcement learning environment
    firm0 = random.sample(FIRMLIST, 1)[0]
    firm1 = random.sample(FIRMLIST, 1)[0]
    env = ContBertrand(firm0, firm1)

    # RL agent
    agent = Agent(env, buffer, net, tgt_net, optimizer)

    # Write output statistics to tensorboard
    writer = SummaryWriter(comment="-")

    # Initialize variables
    env.seed(SEED)  # TODO; is this used?
    torch.manual_seed(SEED)
    frame_idx = 0
    ep_idx = 0
    epsilon = EPSILON_START

    firmlist_cartesian = itertools.product(FIRMLIST, FIRMLIST)
    firmlist = []
    for element in firmlist_cartesian:
        firmlist.append(element)

    # Training – Main loop
    firm0 = random.sample(FIRMLIST, 1)[0]
    firm1 = random.sample(FIRMLIST, 1)[0]

    # Make econ variables
    #dict_key = str((firm0, firm1))
    #nash_action = eparams['nash_actions'][dict_key]
    #monopoly_action = eparams['monopoly_actions'][dict_key]
    #colab_action = eparams['colab_actions'][dict_key]
    #nash_profit = profit(nash_action, A0, MU, firm0, firm1, nA)
    #monopoly_profit = profit(monopoly_action, A0, MU, firm0, firm1, nA)
    #colab_profit = profit(colab_action, A0, MU, firm0, firm1, nA)

    # Initiate new env and amTFT agent
    s_next = env.reset(firm0, firm1)
    done = False

    for t in range(1, FRAMES):
        if done:  # episode ends with probability gamma
            # Save episodal reward
            mean_pg = np.mean(agent.total_pg)
            writer.add_scalar("Agent_avg_profit", mean_pg, ep_idx)
            agent.total_pg = []
            ep_idx += 1
            # Randomize the firms
            firm0 = random.sample(FIRMLIST, 1)[0]
            firm1 = random.sample(FIRMLIST, 1)[0]
            # Make econ variables
            # dict_key = str((firm0, firm1))
            #nash_action = eparams['nash_actions'][dict_key]
            #monopoly_action = eparams['monopoly_actions'][dict_key]
            #colab_action = eparams['colab_actions'][dict_key]
            #nash_profit = profit(nash_action, A0, MU, firm0, firm1, nA)
            #monopoly_profit = profit(monopoly_action, A0, MU, firm0, firm1, nA)
            #colab_profit = profit(colab_action, A0, MU, firm0, firm1, nA)

            # Initiate new env and amTFT agent
            s_next = env.reset(firm0, firm1)
            done = False

        frame_idx += 1
        epsilon = max(EPSILON_FINAL,
                      EPSILON_START - frame_idx / EPSILON_DECAY_LAST_FRAME)
        if frame_idx > ((EPSILON_FINAL + FRAMES) / 2):
            epsilon = 0
        s = s_next
        # TODO: this used to be simply net. SHOULD IT NOT BE agent.net?
        action0 = agent.act(s[np.array([0, 1, 4, 5])],
                            epsilon,
                            device=device.type)
        action1 = agent.act(s[np.array([2, 3, 4, 5])],
                            epsilon,
                            device=device.type)  # LARGEST CHANGE
        s_next, reward_n, done, _ = env.step(action0, action1)
        exp = Experience(s[np.array([0, 1, 4, 5])], action0, reward_n[0], done,
                         s_next[np.array([0, 1, 4, 5])])
        exp1 = Experience(s[np.array([2, 3, 4, 5])], action1, reward_n[1],
                          done, s_next[np.array([2, 3, 4,
                                                 5])])  # ANOTHER CHANGE
        agent.exp_buffer.append(exp)
        agent.exp_buffer.append(exp1)

        if reward_n is not None:
            # TODO: add for both firms
            reward = reward_n[0]
            pg = reward
            #pg = profit_gain(reward, nash_profit, colab_profit)[0] # important to index here
            agent.total_pg.append(pg)

        if len(agent.exp_buffer) < REPLAY_START_SIZE:
            continue

        if frame_idx % SYNC_TARGET_FRAMES == 0:  # Update target network
            agent.tgt_net.load_state_dict(agent.net.state_dict())

        batch = agent.exp_buffer.sample(BATCH_SIZE)
        agent.optimizer.zero_grad()
        loss_t = calc_loss(batch, agent.net, agent.tgt_net, device=device)
        loss_t.backward()
        # Gradient clipping
        for param in agent.net.parameters():
            param.grad.clamp_(-1, 1)
        agent.optimizer.step()
        writer.add_scalar("loss", loss_t, frame_idx)

        if frame_idx % 100_000 == 0:
            print(frame_idx)

        if frame_idx % 500_000 == 0:
            print(frame_idx)
            torch.save(
                {
                    'agent_state_dict': agent.net.state_dict(),
                    'optimizer_dict': agent.optimizer.state_dict(),
                    'epsilon': epsilon,
                    'frame_idx': frame_idx,
                    'env_state': s_next
                },
                str(frame_idx) + PATH)
def collect_entropy_policies(env, epochs, T, MODEL_DIR=''):

    video_dir = 'videos/' + args.exp_name

    direct = os.getcwd() + '/data/'
    experiment_directory = direct + args.exp_name
    print(experiment_directory)

    print(sys.argv)
    if not os.path.exists(experiment_directory):
        os.makedirs(experiment_directory)
        f = open(experiment_directory + '/args', 'w')
        f.write(' '.join(sys.argv))
        f.flush()

    indexes = [1, 5, 10, 15]
    states_visited_indexes = [0, 5, 10, 15]

    states_visited_cumulative = []
    states_visited_cumulative_baseline = []

    running_avg_p = np.zeros(shape=(tuple(ant_utils.num_states)))
    running_avg_p_xy = np.zeros(shape=(tuple(ant_utils.num_states_2d)))
    running_avg_ent = 0
    running_avg_ent_xy = 0

    running_avg_p_baseline = np.zeros(shape=(tuple(ant_utils.num_states)))
    running_avg_p_baseline_xy = np.zeros(
        shape=(tuple(ant_utils.num_states_2d)))
    running_avg_ent_baseline = 0
    running_avg_ent_baseline_xy = 0

    pct_visited = []
    pct_visited_baseline = []
    pct_visited_xy = []
    pct_visited_xy_baseline = []

    running_avg_entropies = []
    running_avg_entropies_xy = []
    running_avg_ps_xy = []
    avg_ps_xy = []

    running_avg_entropies_baseline = []
    running_avg_entropies_baseline_xy = []
    running_avg_ps_baseline_xy = []
    avg_ps_baseline_xy = []

    policies = []
    distributions = []
    initial_state = init_state(env)

    prebuf = ExperienceBuffer()
    env.reset()
    for t in range(10000):
        action = env.action_space.sample()
        obs, reward, done, _ = env.step(action)
        prebuf.store(get_state(env, obs))
        if done:
            env.reset()
            done = False

    prebuf.normalize()
    normalization_factors = prebuf.normalization_factors
    utils.log_statement(normalization_factors)
    prebuf = None
    if not args.gaussian:
        normalization_factors = []

    reward_fn = np.zeros(shape=(tuple(ant_utils.num_states)))

    for i in range(epochs):
        utils.log_statement("*** ------- EPOCH %d ------- ***" % i)

        # clear initial state if applicable.
        if not args.initial_state:
            initial_state = []
        else:
            utils.log_statement(initial_state)
        utils.log_statement("max reward: " + str(np.max(reward_fn)))

        logger_kwargs = setup_logger_kwargs("model%02d" % i,
                                            data_dir=experiment_directory)

        # Learn policy that maximizes current reward function.
        print("Learning new oracle...")
        seed = random.randint(1, 100000)
        sac = AntSoftActorCritic(lambda: gym.make(args.env),
                                 reward_fn=reward_fn,
                                 xid=i + 1,
                                 seed=seed,
                                 gamma=args.gamma,
                                 ac_kwargs=dict(hidden_sizes=[args.hid] *
                                                args.l),
                                 logger_kwargs=logger_kwargs,
                                 normalization_factors=normalization_factors)

        # The first policy is random
        if i == 0:
            sac.soft_actor_critic(epochs=0)
        else:
            sac.soft_actor_critic(epochs=args.episodes,
                                  initial_state=initial_state,
                                  start_steps=args.start_steps)
        policies.append(sac)

        p, _ = sac.test_agent(T, normalization_factors=normalization_factors)
        distributions.append(p)
        weights = utils.get_weights(distributions)

        epoch = 'epoch_%02d' % (i)
        if args.render:
            if i < 10:
                sac.record(T=args.record_steps,
                           n=1,
                           video_dir=video_dir + '/baseline/' + epoch,
                           on_policy=False)
            sac.record(T=args.record_steps,
                       n=1,
                       video_dir=video_dir + '/entropy/' + epoch,
                       on_policy=True)

        # Execute the cumulative average policy thus far.
        # Estimate distribution and entropy.
        print("Executing mixed policy...")
        average_p, average_p_xy, initial_state, states_visited, states_visited_xy = \
            execute_average_policy(env, policies, T, weights,
                                   reward_fn=reward_fn, norm=normalization_factors,
                                   initial_state=initial_state, n=args.n,
                                   render=args.render, video_dir=video_dir+'/mixed/'+epoch, epoch=i,
                                   record_steps=args.record_steps)

        print("Calculating maxEnt entropy...")
        round_entropy = entropy(average_p.ravel())
        round_entropy_xy = entropy(average_p_xy.ravel())

        # Update running averages for maxEnt.
        print("Updating maxEnt running averages...")
        running_avg_ent = running_avg_ent * (
            i) / float(i + 1) + round_entropy / float(i + 1)
        running_avg_ent_xy = running_avg_ent_xy * (
            i) / float(i + 1) + round_entropy_xy / float(i + 1)
        running_avg_p *= (i) / float(i + 1)
        running_avg_p += average_p / float(i + 1)
        running_avg_p_xy *= (i) / float(i + 1)
        running_avg_p_xy += average_p_xy / float(i + 1)

        # update reward function
        print("Update reward function")
        eps = 1 / np.sqrt(ant_utils.total_state_space)
        if args.cumulative:
            reward_fn = grad_ent(running_avg_p)
        else:
            reward_fn = 1.
            average_p += eps
            reward_fn /= average_p
        average_p = None  # delete big array

        # (save for plotting)
        running_avg_entropies.append(running_avg_ent)
        running_avg_entropies_xy.append(running_avg_ent_xy)
        if i in indexes:
            running_avg_ps_xy.append(np.copy(running_avg_p_xy))
            avg_ps_xy.append(np.copy(average_p_xy))

        print("Collecting baseline experience....")
        p_baseline, p_baseline_xy, states_visited_baseline, states_visited_xy_baseline = sac.test_agent_random(
            T, normalization_factors=normalization_factors, n=args.n)

        plotting.states_visited_over_time(states_visited,
                                          states_visited_baseline, i)
        plotting.states_visited_over_time(states_visited_xy,
                                          states_visited_xy_baseline,
                                          i,
                                          ext='_xy')

        # save for cumulative plot.
        if i in states_visited_indexes:
            # average over a whole bunch of rollouts
            # slow: so only do this when needed.
            print("Averaging unique xy states visited....")
            states_visited_xy = compute_states_visited_xy(
                env,
                policies,
                norm=normalization_factors,
                T=T,
                n=args.n,
                N=args.avg_N)
            states_visited_xy_baseline = compute_states_visited_xy(
                env,
                policies,
                norm=normalization_factors,
                T=T,
                n=args.n,
                N=args.avg_N,
                initial_state=initial_state,
                baseline=True)
            states_visited_cumulative.append(states_visited_xy)
            states_visited_cumulative_baseline.append(
                states_visited_xy_baseline)

        print("Compute baseline entropy....")
        round_entropy_baseline = entropy(p_baseline.ravel())
        round_entropy_baseline_xy = entropy(p_baseline_xy.ravel())

        # Update baseline running averages.
        print("Updating baseline running averages...")
        running_avg_ent_baseline = running_avg_ent_baseline * (
            i) / float(i + 1) + round_entropy_baseline / float(i + 1)
        running_avg_ent_baseline_xy = running_avg_ent_baseline_xy * (
            i) / float(i + 1) + round_entropy_baseline_xy / float(i + 1)

        running_avg_p_baseline *= (i) / float(i + 1)
        running_avg_p_baseline += p_baseline / float(i + 1)
        running_avg_p_baseline_xy *= (i) / float(i + 1)
        running_avg_p_baseline_xy += p_baseline_xy / float(i + 1)

        p_baseline = None

        # (save for plotting)
        running_avg_entropies_baseline.append(running_avg_ent_baseline)
        running_avg_entropies_baseline_xy.append(running_avg_ent_baseline_xy)
        if i in indexes:
            running_avg_ps_baseline_xy.append(
                np.copy(running_avg_p_baseline_xy))
            avg_ps_baseline_xy.append(np.copy(p_baseline_xy))

        utils.log_statement(average_p_xy)
        utils.log_statement(p_baseline_xy)

        # Calculate percent of state space visited.
        pct = np.count_nonzero(running_avg_p) / float(running_avg_p.size)
        pct_visited.append(pct)
        pct_xy = np.count_nonzero(running_avg_p_xy) / float(
            running_avg_p_xy.size)
        pct_visited_xy.append(pct_xy)

        pct_baseline = np.count_nonzero(running_avg_p_baseline) / float(
            running_avg_p_baseline.size)
        pct_visited_baseline.append(pct_baseline)
        pct_xy_baseline = np.count_nonzero(running_avg_p_baseline_xy) / float(
            running_avg_p_baseline_xy.size)
        pct_visited_xy_baseline.append(pct_xy_baseline)

        # Print round summary.
        col_headers = ["", "baseline", "maxEnt"]
        col1 = [
            "round_entropy_xy", "running_avg_ent_xy", "round_entropy",
            "running_avg_ent", "% state space xy", "% total state space"
        ]
        col2 = [
            round_entropy_baseline_xy, running_avg_ent_baseline_xy,
            round_entropy_baseline, running_avg_ent_baseline, pct_xy_baseline,
            pct_baseline
        ]
        col3 = [
            round_entropy_xy, running_avg_ent_xy, round_entropy,
            running_avg_ent, pct_xy, pct
        ]
        table = tabulate(np.transpose([col1, col2, col3]),
                         col_headers,
                         tablefmt="fancy_grid",
                         floatfmt=".4f")
        utils.log_statement(table)

        # Plot from round.
        plotting.heatmap(running_avg_p_xy, average_p_xy, i)
        plotting.heatmap1(running_avg_p_baseline_xy, i)

        if i == states_visited_indexes[3]:
            plotting.states_visited_over_time_multi(
                states_visited_cumulative, states_visited_cumulative_baseline,
                states_visited_indexes)

    # save final expert weights to use with the trained oracles.
    weights_file = experiment_directory + '/policy_weights'
    np.save(weights_file, weights)

    # cumulative plots.
    plotting.running_average_entropy(running_avg_entropies,
                                     running_avg_entropies_baseline)
    plotting.running_average_entropy(running_avg_entropies_xy,
                                     running_avg_entropies_baseline_xy,
                                     ext='_xy')

    plotting.heatmap4(running_avg_ps_xy,
                      running_avg_ps_baseline_xy,
                      indexes,
                      ext="cumulative")
    plotting.heatmap4(avg_ps_xy, avg_ps_baseline_xy, indexes, ext="epoch")

    plotting.percent_state_space_reached(pct_visited,
                                         pct_visited_baseline,
                                         ext='_total')
    plotting.percent_state_space_reached(pct_visited_xy,
                                         pct_visited_xy_baseline,
                                         ext="_xy")

    return policies
Exemple #8
0
    args.device = torch.device('cuda' if use_cuda else 'cpu')

    args.gamma = args.gamma**args.act_every
    args.num_steps = int(args.num_steps / args.act_every)
    args.options = options

    try:
        mp.set_start_method('forkserver', force=True)
        # print("forkserver init")
    except RuntimeError:
        pass

    processes = []

    # Buffer used for sharing rollouts from actors to learner
    experience_buffer = ExperienceBuffer(args.batch_size)
    p = mp.Process(target=experience_buffer.listening)
    p.start()
    processes.append(p)

    # Getting action dim and observation dim from Env
    env = Env(args, device='cpu', options=options, dummy=True)
    observation_dim = env.observation_dim
    args.action_dim = env.action_dim
    env.close()
    print('Observation Space: {} / Action Dim: {}'.format(
        observation_dim, args.action_dim))

    # Initializing shared memory used between workers and learner that contains the actor parameters
    shared_state_dict = Policy(args.action_dim)
    if args.load_model is not None:
Exemple #9
0
def main():

    global UPDATE_FREQ

    tf.reset_default_graph()

    env = gym.make('Freeway-v0')

    num_actions = env.action_space.n
    env_shape = env.observation_space.shape
    image_shape = [env_shape[0], env_shape[1], env_shape[2]]

    # init our double dqn
    main_q_network = Qnetwork(image_shape, FCL_SIZE, num_actions)
    target_q_network = Qnetwork(image_shape, FCL_SIZE, num_actions)

    # check ckpt dirs
    check_or_create_dirs()

    glbal_ops, saver, target_ops = init_tf_variables()

    ep = START_EP
    step_decrease = (START_EP - END_EP) / REDUCE_EP_STEPS

    ex_buffer = ExperienceBuffer()

    j_list = []
    r_list = []

    total_steps = 0

    with tf.Session() as sess:
        sess.run(glbal_ops)

        if LOAD_MODEL:
            print('LOADING MODEL ... ')
            ckpt = tf.train.get_checkpoint_state(PATH)
            saver.restore(sess, ckpt.model_checkpoint_path)

        for episode in range(NUM_EPISODES):
            episode_buffer = ExperienceBuffer()
            observation = env.reset()
            done = False
            reward_all = 0
            j = 0

            while j < MAX_STEPS:
                j += 1
                env.render()
                action = ep_greedy(sess, ep, total_steps, main_q_network,
                                   observation)

                new_observation, reward, done, info = env.step(action)

                total_steps += 1
                episode_results = np.array(
                    [observation, action, reward, new_observation, done])
                episode_experience = np.reshape(episode_results, [1, 5])
                episode_buffer.add(episode_experience)
                #print("accumulated episdoes experience %d" % len(episode_buffer.buffer))
                ep = decrease_ep(total_steps, ep, step_decrease)
                #print("epsilon %f" % ep)
                #print(total_steps)
                if total_steps > PRE_TRAIN_STEPS:
                    if total_steps % (UPDATE_FREQ) == 0:
                        train_batch = ex_buffer.sample(BATCH_SIZE)
                        # take our new observation to perform the double-dqn
                        q1 = sess.run(main_q_network.predict,
                                      feed_dict={
                                          main_q_network.image_inputs:
                                          np.stack(train_batch[:, 3])
                                      })
                        q2 = sess.run(target_q_network.q_output,
                                      feed_dict={
                                          target_q_network.image_inputs:
                                          np.stack(train_batch[:, 3])
                                      })

                        end_multiplier = -(train_batch[:, 4] - 1)
                        # NOTE: choose q_values from target q network using main q network
                        double_q = q2[range(BATCH_SIZE), q1]
                        target_q = train_batch[:, 2] + (GAMMA * double_q *
                                                        end_multiplier)
                        # NOTE: update our main q network after calculate q target from double q
                        _ = sess.run(main_q_network.train_op,
                                     feed_dict={
                                         main_q_network.image_inputs:
                                         np.stack(train_batch[:, 0]),
                                         main_q_network.target_q:
                                         target_q,
                                         main_q_network.actions:
                                         train_batch[:, 1]
                                     })

                        # NOTE: we update our target network separately
                        update_target(sess, target_ops)

                reward_all += reward
                observation = new_observation

                if done == True:
                    break

            ex_buffer.add(episode_buffer.buffer)
            j_list.append(j)
            r_list.append(reward_all)

            if episode % 1000 == 0:
                saver.save(sess, PATH + '/model-' + str(episode) + '.ckpt')
                print("saved model at %d" % episode)

            if len(r_list) % 10 == 0:
                print(total_steps, np.mean(r_list[-10:]), ep)

        saver.save(sess, PATH + '/model-' + str(episode) + '.ckpt')
    print("Percent of succesful episodes: " + str(sum(rList) / num_episodes) +
          "%")
Exemple #10
0
def playAndLearn(agentNet, targetNet, player):
    expBuffer = ExperienceBuffer(exp_capacity, PRIO_ALPHA)
    expUnroller = ExperienceUnroller(EXP_UNROLL_STEPS, GAMMA)
    qGamma = GAMMA**(EXP_UNROLL_STEPS + 1)
    device = AgentNet.device

    writer = SummaryWriter(logdir=os.path.join(
        'tensorboard',
        datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')))

    reportInterval = 2000

    sampleCountTotal = 0
    sampleLastReport = initial_exp_gathering
    episodeCountTotal = 0
    timeLastReport = time.perf_counter()
    epsilon = epsilon_initial
    beta = PRIO_BETA_INITIAL

    lossFunc = torch.nn.MSELoss()
    optim = torch.optim.Adam(agentNet.parameters(), lr=learning_rate)

    lossAcc = 0
    lossCnt = 0
    epLen = 0
    episodeLengths = collections.deque(maxlen=20)
    evalScMin = evalScAvg = evalScMax = evalToMin = evalToAvg = evalToMax = 0

    try:
        while True:
            if sampleCountTotal > initial_exp_gathering:
                part = min(1.0, (sampleCountTotal - initial_exp_gathering) /
                           epsilon_decay_time)
                epsilon = epsilon_initial - epsilon_decay_amount * part
                beta = min(
                    1.0, PRIO_BETA_INITIAL + (1 - PRIO_BETA_INITIAL) *
                    (sampleCountTotal - initial_exp_gathering) /
                    PRIO_BETA_RISE_TIME)

            s, a, r, term, s1 = player.makeTurn(epsilon)
            sampleCountTotal += 1
            epLen += 1

            if term:
                episodeCountTotal += 1
                episodeLengths.append(epLen)
                epLen = 0
                game.reset()

            s, a, r, term, s1 = expUnroller.add(s, a, r, term, s1)
            if s is not None:
                expBuffer.add(s, a, r, term, s1)

            if expBuffer.count() < initial_exp_gathering:
                timeLastReport = time.perf_counter()
                continue

            if sampleCountTotal - sampleLastReport > reportInterval:
                timeCur = time.perf_counter()
                speed = (sampleCountTotal -
                         sampleLastReport) / (timeCur - timeLastReport)
                timeLastReport = timeCur
                sampleLastReport += reportInterval
                epLengthAvg = np.mean(episodeLengths)

                writer.add_scalar('Training/Eps', epsilon, sampleCountTotal)
                writer.add_scalar('Training/Speed', speed, sampleCountTotal)
                writer.add_scalar('Training/Episode Length', epLengthAvg,
                                  sampleCountTotal)
                if lossCnt > 0:
                    writer.add_scalar('Training/Loss', lossAcc / lossCnt,
                                      sampleCountTotal)

                print(
                    f'Played {sampleLastReport} steps ({episodeCountTotal} episodes) ({speed:8.2f} samples/s): Average steps {epLengthAvg:7.2f}, Evaluation score {evalScMin:2}, {evalScAvg:4.1f}, {evalScMax:2}, total {evalToMin:5}, {evalToAvg:7.1f}, {evalToMax:5}'
                )
                lossAcc = lossCnt = 0

            if sampleCountTotal % evaluation_interval == 0:
                evalScMin, evalScAvg, evalScMax, evalToMin, evalToAvg, evalToMax = playSomeGames(
                    Game2048(), agentNet, EVAL_GAMES)

                writer.add_scalar('Evaluation/Eval Score Avg', evalScAvg,
                                  sampleCountTotal)
                writer.add_scalar('Evaluation/Eval Score Min', evalScMin,
                                  sampleCountTotal)
                writer.add_scalar('Evaluation/Eval Score Max', evalScMax,
                                  sampleCountTotal)
                writer.add_scalar('Evaluation/Eval Total Score Avg', evalToAvg,
                                  sampleCountTotal)
                writer.add_scalar('Evaluation/Eval Total Score Min', evalToMin,
                                  sampleCountTotal)
                writer.add_scalar('Evaluation/Eval Total Score Max', evalToMax,
                                  sampleCountTotal)

            if sampleCountTotal % target_sync_interval == 0:
                targetNet.load_state_dict(agentNet.state_dict())

            if sampleCountTotal % 2 == 0:
                continue

            optim.zero_grad()

            states, actions, rewards, terms, newStates, idxs, weights = expBuffer.sample(
                batch_size, beta)

            states_t = agentNet.prepareInputs(states)
            newStates_t = agentNet.prepareInputs(newStates)
            actions_t = torch.from_numpy(actions).to(device)
            rewards_t = torch.from_numpy(rewards).to(device)
            terms_t = torch.from_numpy(terms).to(device)
            weights_t = torch.from_numpy(weights).to(device)

            stateActionQs = agentNet(states_t)
            stateActionQs = torch.gather(stateActionQs, 1,
                                         actions_t.unsqueeze(-1)).squeeze(-1)

            nextActions = agentNet(newStates_t).max(1)[1]
            nextStateQs = targetNet(newStates_t).gather(
                1, nextActions.unsqueeze(-1)).squeeze(-1)
            nextStateQs[terms_t] = 0.0
            nextStateQs = nextStateQs.detach()

            totalRewards_t = nextStateQs * qGamma + rewards_t
            losses_t = weights_t * (stateActionQs - totalRewards_t)**2
            loss = losses_t.mean()

            loss.backward()

            torch.nn.utils.clip_grad_norm_(agentNet.parameters(), GRAD_CLIP)
            optim.step()
            expBuffer.updatePriorities(idxs,
                                       losses_t.data.cpu().numpy() + 1e-5)

            lossAcc += loss.item()
            lossCnt += 1

    except KeyboardInterrupt:
        print(
            f'Playing stopped after {sampleCountTotal} steps ({episodeCountTotal} episodes).'
        )
        torch.save(
            agentNet.state_dict(),
            os.path.join(
                'models',
                datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') +
                f' SC {sampleCountTotal}'))

    writer.close()

def updateTarget(op_holder, sess):
    for op in op_holder:
        sess.run(op)


tf.logging.set_verbosity(tf.logging.INFO)
tf.reset_default_graph()
mainQN = QNetwork(sensor_size, action_size, h_size, l_rate, init_value)
targetQN = QNetwork(sensor_size, action_size, h_size, l_rate, init_value)
init = tf.initialize_all_variables()
saver = tf.train.Saver()
trainables = tf.trainable_variables()
targetOps = updateTargetGraph(trainables, tau)
myBuffer = ExperienceBuffer(total_size, resolution, buffersize)
env = VrepEnvironment(motor_speed, turn_speed, resolution, reset_distance,
                      pub_rate, dvs_queue, resize_factor, crop)

# Set the rate of random action decrease.
e = startE
stepDrop = (startE - endE) / anneling_steps

jList = []
rList = []
total_steps = 0

# Make a path for model to be saved in.
if not os.path.exists(path):
    os.makedirs(path)