def analyse_shape_at_time(t):
  img = exp.load_img(t = t);
  pos_center, pos_head, pos_tail, curvature_mean, curvature_variation, line_center, line_left, line_right = analyse_shape(img, verbose = True, save = figfile % t);
  
  ldat = np.load(linefile, mmap_mode = 'r+');
  ldat[t,0,:,:] = line_center;
  ldat[t,1,:,:] = line_left;
  ldat[t,2,:,:] = line_right;
  #ldat.close();
  
  pdat = np.load(posfile, mmap_mode = 'r+');
  pdat[t,0,:] = pos_center;
  pdat[t,1,:] = pos_head;
  pdat[t,2,:] = pos_tail;
  #pdat.close();
  
  cdat = np.load(curfile, mmap_mode = 'r+');
  cdat[t,0] = curvature_mean;
  cdat[t,1] = curvature_variation;
"""
Created on Wed Jun 29 16:16:00 2016

@author: ckirst
"""

import cv2
import matplotlib.pyplot as plt
import numpy as np

import skimage.feature as ftr


import experiment as exp;

img = exp.load_img(t = 529204)

#img = exp.load_img(t = 500017)

t = 0;


t = t + 1;
img = exp.load_img(t = 529204 + t)
#img = cv2.medianBlur(img,5);
img = cv2.GaussianBlur(img, (5,5), 1);


#dx = cv2.Sobel(img, sobel_x, 1, 0, 3);
#dy = cv2.Sobel(img, sobel_y, 0, 1, 3);
      


plot_body_line(tstart = 500000, tend = 500004, dt = 1)

plt.figure(300); plt.clf();
nts = 4;
cc = cm.Blues;
lines = np.load(linefile, mmap_mode = 'r');
poss = np.load(posfile, mmap_mode = 'r');
xy = exp.load(wid = wid);

for ti in range(nts):
  plt.subplot(2,nts,ti+1);
  tt = 500000 + ti;
  img = exp.load_img(t = tt);
  plt.imshow(img, cmap = 'gray', interpolation = 'nearest')
  
  cl = lines[tt,0,:,:];
  label = "%s\n%s\n%s" % (str(poss[tt, 0,:]), str(xy[tt,:]), str(np.round(xy[tt,:])));
  plt.plot(cl[0,:], cl[1,:], color = 'red');
  
  if ti > 0:  
    plt.subplot(2,nts,ti);
    plt.plot(cl[0,:], cl[1,:], color = 'blue');  
  
  plt.subplot(2,nts,ti+nts+1);
  img2 =  exp.load_img(t = tt-1);
  plt.imshow(np.asarray(img, dtype = float)-img2, cmap = 'jet', interpolation = 'nearest')
  plt.title(label)
import imageprocessing.active_worm as aw;

import experiment as exp
import scipy.ndimage.filters as filters

from scripts.analyse_wormshape import analyse_shape
from skimage.filters import threshold_otsu

### Test phi error - move


reload(aw);

# load image
img = exp.load_img(wid = 80, t= 513466);
imgs = filters.gaussian_filter(np.asarray(img, float), 1.0);
#imgs[imgs < 60] = 60;
imgs = imgs - imgs.max();

threshold_level = 0.95;

level = threshold_level * threshold_otsu(imgs);

mask = imgs < level;
phi = aw.mask2phi(mask);


ws = aw.WormModel();
ws.from_image(imgs);
ws.widen(0.75);
import copy

import imageprocessing.active_worm as aw

import experiment as exp
import scipy.ndimage.filters as filters

from scripts.analyse_wormshape import analyse_shape
from skimage.filters import threshold_otsu

### Test phi error - move

reload(aw)

# load image
img = exp.load_img(wid=80, t=513466)
imgs = filters.gaussian_filter(np.asarray(img, float), 1.0)
#imgs[imgs < 60] = 60;
imgs = imgs - imgs.max()

threshold_level = 0.95

level = threshold_level * threshold_otsu(imgs)

mask = imgs < level
phi = aw.mask2phi(mask)

ws = aw.WormModel()
ws.from_image(imgs)
ws.widen(0.75)
ws2 = copy.deepcopy(ws)
ws2.bend(0.5, exponent=10, head=True)
plot_worms(ws, ws2)

ws2 = copy.deepcopy(ws)
ws2.bend(0.5, exponent=5, head=False)
plot_worms(ws, ws2)

### Generate from image
reload(aw)

import experiment as exp
import scipy.ndimage.filters as filters

# load image
img = exp.load_img(wid=80, t=500000)
imgs = filters.gaussian_filter(np.asarray(img, float), 1.0)

ws = aw.WormModel()
ws.from_image(imgs, verbose=True)

plt.figure(1)
plt.clf()
ws.plot(image=imgs)

### Self intersections

ws = aw.WormModel(theta=np.hstack(
    [np.linspace(0.1, 0.8, 10),
     np.linspace(0.9, 0.1, 11)]),
                  length=150)
import numpy as np
import matplotlib.pyplot as plt

import experiment as exp

import scipy.ndimage.morphology as morph
from skimage.filters import threshold_otsu
import scipy.ndimage.filters as filters

from scipy.interpolate import splprep, splev

from imageprocessing.active_contour import chanvese

import cv2

img = exp.load_img(t=408000);

#plt.figure(10); plt.clf();
#plt.imshow(img, cmap = 'gray', clim = (0,256),  interpolation="nearest");
#plt.figure(11); plt.clf();
#plt.hist(img.flatten(), bins = 256);


## smooth image -> contour from plt

imgs = filters.gaussian_filter(np.asarray(img, float), 1);

plt.figure(12); plt.clf();
plt.subplot(1,3,1)
plt.imshow(img, interpolation ='nearest')
plt.subplot(1,3,2)
# -*- coding: utf-8 -*-
"""
Created on Thu Jun  9 09:23:59 2016

@author: ckirst
"""

import time
import numpy as np
import matplotlib.pyplot as plt

import experiment as exp


plt.figure(1); plt.clf();
img = exp.load_img(t=100000);
plt.imshow(img, cmap = 'gray')

#animate movie  
fig, ax = plt.subplots(1,2)

img = exp.load_img(t=100000)[30:120, 30:120];
img2 =exp.load_img(t=100000+1)[30:120, 30:120];
figimg = ax[0].imshow(img, cmap = 'gray', clim = (0,256), interpolation="nearest");
delta = np.asarray(img2, dtype = float) - np.asarray(img, dtype = float)
figimg2 = ax[1].imshow(delta, cmap = 'jet', clim = (-30,60), interpolation="nearest");
plt.show();

for t in range(200000, 300000):
  img = img2;
  img2 = exp.load_img(t=t+1)[30:120, 30:120];
Exemple #9
0
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 29 16:16:00 2016

@author: ckirst
"""

import cv2
import matplotlib.pyplot as plt
import numpy as np

import skimage.feature as ftr

import experiment as exp

img = exp.load_img(t=529204)

#img = exp.load_img(t = 500017)

t = 0

t = t + 1
img = exp.load_img(t=529204 + t)
#img = cv2.medianBlur(img,5);
img = cv2.GaussianBlur(img, (5, 5), 1)

#dx = cv2.Sobel(img, sobel_x, 1, 0, 3);
#dy = cv2.Sobel(img, sobel_y, 0, 1, 3);

from scipy import ndimage
Exemple #10
0
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 28 17:00:11 2016

@author: ckirst
"""

import numpy as np

import experiment as exp
import scipy.ndimage.filters as filters
from skimage.filters import threshold_otsu

# load image
img = exp.load_img(wid = 80, t= 529204);
img = exp.load_img(wid = 80, t= 529218);

imgs = filters.gaussian_filter(np.asarray(img, float), 1.0);

threshold_level = 0.95;

level = threshold_level * threshold_otsu(imgs)


import numpy as np
from numpy import ma

import matplotlib as mpl
import matplotlib._contour as _contour

_mask = None;
ws2.bend(0.5, exponent  = 10, head = True);
plot_worms(ws, ws2);

ws2 = copy.deepcopy(ws);
ws2.bend(0.5, exponent  = 5, head = False);
plot_worms(ws, ws2);


### Generate from image 
reload(aw);

import experiment as exp
import scipy.ndimage.filters as filters

# load image
img = exp.load_img(wid = 80, t= 500000);
imgs = filters.gaussian_filter(np.asarray(img, float), 1.0);

ws = aw.WormModel();
ws.from_image(imgs, verbose = True);

plt.figure(1); plt.clf();
ws.plot(image = imgs)


### Self intersections

ws = aw.WormModel(theta = np.hstack([np.linspace(0.1, 0.8, 10), np.linspace(0.9, 0.1, 11)]) , length = 150);

mask = ws.mask();
phi = ws.phi();
        else:
            tag = ''

        tagfunc = tag_from_function(
            function=self.function,
            with_default_parameter=self.with_default_parameter,
            parameter=self.parameter,
            **kwargs)

        return tag_join(tag, tagfunc)

    def run(self, data=None):
        """Run the analysis"""


img = exp.load_img(t=408000)

#plt.figure(10); plt.clf();
#plt.imshow(img, cmap = 'gray', clim = (0,256),  interpolation="nearest");
#plt.figure(11); plt.clf();
#plt.hist(img.flatten(), bins = 256);

## smooth image -> contour from plt

imgs = filters.gaussian_filter(np.asarray(img, float), 1)

plt.figure(12)
plt.clf()
plt.subplot(1, 3, 1)
plt.imshow(img, interpolation='nearest')
plt.subplot(1, 3, 2)
Exemple #13
0
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 30 17:43:48 2016

@author: ckirst
"""


import matplotlib.pyplot as plt
import numpy as np
import scipy.ndimage.filters as filters

import experiment as exp;

img = exp.load_img(t = 529204)
imgs = filters.gaussian_filter(np.asarray(img, float), 1.0);
  
imgdata = imgs.flatten();
imgdata.shape = (imgdata.shape[0], 1);

plt.figure(1); plt.clf();
plt.hist(imgdata[:,0], 256)


### fit mixture of tw gaussians to it

from sklearn import mixture

clf = mixture.GMM(n_components=3, covariance_type='full',  n_init = 15, verbose = 2)
clf.fit(imgdata)
Exemple #14
0
# -*- coding: utf-8 -*-
"""
Created on Thu Jun  9 09:23:59 2016

@author: ckirst
"""

import time
import numpy as np
import matplotlib.pyplot as plt

import experiment as exp

plt.figure(1)
plt.clf()
img = exp.load_img(t=100000)
plt.imshow(img, cmap='gray')

#animate movie
fig, ax = plt.subplots(1, 2)

img = exp.load_img(t=100000)[30:120, 30:120]
img2 = exp.load_img(t=100000 + 1)[30:120, 30:120]
figimg = ax[0].imshow(img, cmap='gray', clim=(0, 256), interpolation="nearest")
delta = np.asarray(img2, dtype=float) - np.asarray(img, dtype=float)
figimg2 = ax[1].imshow(delta,
                       cmap='jet',
                       clim=(-30, 60),
                       interpolation="nearest")
plt.show()