Exemple #1
0
def plot_from_exps(
    exp_data,
    filters={},
    split_figures_by=None,
    split_plots_by=None,
    x_key='n_timesteps',
    y_key=None,
    sup_y_key=None,
    plot_name='./bad-models.png',
    subfigure_titles=None,
    plot_labels=None,
    x_label=None,
    y_label=None,
    num_rows=1,
    y_limits=None,
    report_max_performance=False,
    log_scale=False,
    round_x=None,
):

    exp_data = filter(exp_data, filters=filters)
    exps_per_plot = group_by(exp_data, group_by_key=split_figures_by)
    num_columns = len(exps_per_plot.keys())
    assert num_columns % num_rows == 0
    num_columns = num_columns // num_rows
    fig, axarr = plt.subplots(num_rows, num_columns, figsize=(14, 8))
    axarr = np.reshape(axarr, (num_rows, num_columns))
    fig.tight_layout(pad=5.0, w_pad=1, h_pad=2, rect=[0, 0, 1, 1])

    # iterate over subfigures
    for i, (default_plot_title,
            plot_exps) in enumerate(sorted(exps_per_plot.items())):
        plots_in_figure_exps = group_by(plot_exps, split_plots_by)
        subfigure_title = subfigure_titles[
            i] if subfigure_titles else default_plot_title
        r, c = i // num_columns, i % num_columns
        axarr[r, c].set_title(subfigure_title)
        axarr[r, c].xaxis.set_major_locator(plt.MaxNLocator(5))
        axarr[r, c].ticklabel_format(style='sci', axis='x', scilimits=(0, 0))

        # iterate over plots in figure
        y_max_mean = -1e10
        y_axis_min = 1e10
        y_axis_max = -1e10
        for j, default_label in enumerate(
                sorted(plots_in_figure_exps, key=sorting_legend)):
            exps = plots_in_figure_exps[default_label]
            x, y_mean, y_std, x_limits = prepare_data_for_plot(
                exps, y_key=y_key, sup_y_key=sup_y_key, round_x=round_x)

            label = plot_labels[j] if plot_labels else default_label
            _label = label if i == 0 else "__nolabel__"
            if log_scale:
                axarr[r, c].semilogx(x,
                                     y_mean,
                                     label=_label,
                                     linewidth=LINEWIDTH,
                                     color=get_color(label))
            else:
                axarr[r, c].plot(x,
                                 y_mean,
                                 label=_label,
                                 linewidth=LINEWIDTH,
                                 color=get_color(label))

            axarr[r, c].fill_between(x,
                                     y_mean + y_std,
                                     y_mean - y_std,
                                     alpha=0.2,
                                     color=get_color(label))

            # axis labels
            axarr[r, c].set_xlabel(x_label if x_label else x_key)
            if c == 0:
                axarr[r, c].set_ylabel(y_label if y_label else y_key)
            if x_limits is not None:
                axarr[r, c].set_xlim(*x_limits)
            if y_limits is not None:
                axarr[r, c].set_ylim(*y_limits)
            else:
                _y_axis_min, _y_axis_max = correct_limit(
                    axarr[r, c], x, y_mean - y_std, y_mean + y_std)
                y_axis_max = max(_y_axis_max, y_axis_max)
                y_axis_min = min(_y_axis_min, y_axis_min)
                if max(y_mean) > y_max_mean:
                    y_max_mean = max(y_mean)

        if report_max_performance:
            label = 'max' if i == 0 else "__nolabel__"
            axarr[r, c].plot(axarr[r, c].get_xlim(), [y_max_mean] * 2,
                             'k--',
                             label=label)
        if y_limits is None:
            axarr[r, c].set_ylim([y_axis_min, y_axis_max])

    fig.legend(loc='lower center',
               ncol=4,
               bbox_transform=plt.gcf().transFigure)
    fig.savefig(plot_name)
Exemple #2
0
            axarr[r, c].plot(axarr[r, c].get_xlim(), [y_max_mean] * 2,
                             'k--',
                             label=label)
        if y_limits is None:
            axarr[r, c].set_ylim([y_axis_min, y_axis_max])

    fig.legend(loc='lower center',
               ncol=3,
               bbox_transform=plt.gcf().transFigure)
    fig.savefig(plot_name)


# filter_dict = {'fast_lr': 0.001, 'path_length':200}
filter_dict = {}

exps_data_filtered = filter(exps_data, filter_dict)

plot_from_exps(
    exps_data,
    split_figures_by='env.$class',
    split_plots_by='algo',
    y_key='train-AverageReturn',
    x_key='Time',
    filters=filter_dict,
    sup_y_key=[
        'EnvTrajs-AverageReturn', 'Data-EnvTrajs-AverageReturn',
        'EnvTrajs-AverageReturn', 'train-AverageReturn'
    ],
    # subfigure_titles=['HalfCheetah - output_bias_range [0.0, 0.1]',
    #                  'HalfCheetah - output_bias_range [0.0, 0.5]',
    #                  'HalfCheetah - output_bias_range [0.0, 1.0]'],