if __name__ == '__main__': MULTIPLE_EXPERIMENTS = True KFOLD = False ONE_HOT = False COMPUTE_PERMUTATION = True RESULTS_DIR = Path("k_50_sigma_5_x1_num_for_paper_k_200_sigma_20_nrows100/") REGRESSION = True x, y = get_x_y(2) contains_num_features = len(get_num_cols(x.dtypes)) > 0 pp = get_preprocessing_pipeline if contains_num_features else get_preprocessing_pipeline_only_cat predictors = GBM_REGRESSORS if REGRESSION else GBM_CLASSIFIERS config = Config( multiple_experimens=MULTIPLE_EXPERIMENTS, n_experiments=10,#100 kfold_flag=KFOLD, compute_permutation=COMPUTE_PERMUTATION, save_results=True, one_hot=ONE_HOT, contains_num_features=contains_num_features, seed=SEED, kfolds=KFOLDS, predictors=predictors, columns_to_remove=[], get_x_y=get_x_y, results_dir=RESULTS_DIR, preprocessing_pipeline=pp) experiment_configurator(config, True)
from experiments.default_config import RF_CLASSIFIERS from experiments.preprocess_pipelines import get_preprocessing_pipeline_only_num from experiments.experiment_configurator import experiment_configurator """ Simple classification, only numerical features """ def get_x_y(): data = load_breast_cancer() X = DataFrame(data['data'], columns=data['feature_names']) y = Series(data['target']) return X, y if __name__ == '__main__': config = Config( kfold_flag=False, compute_permutation=False, save_results=True, one_hot=False, contains_num_features=True, seed=7, kfolds=30, predictors=RF_CLASSIFIERS, columns_to_remove=[], get_x_y=get_x_y, preprocessing_pipeline=get_preprocessing_pipeline_only_num) experiment_configurator(config)