def main(): dataset = 'mnist' black_box = 'RF' gamma = None nbr_prototypes = 10 nbr_criticisms = 10 path = './' path_models = path + 'models/' black_box_filename = path_models + '%s_%s' % (dataset, black_box) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb, transform = get_black_box(black_box, black_box_filename, use_rgb, return_model=True) bb_predict, _ = get_black_box(black_box, black_box_filename, use_rgb) i2e = 0 img = X_test[i2e] Y_pred = bb_predict(X_test) bbo = Y_pred[i2e] # for label in np.unique(Y_pred): X_idx = np.where(Y_pred == bbo)[0] Z = transform(X_test[X_idx]) scaler = MinMaxScaler() Z = scaler.fit_transform(Z) zimg = scaler.transform(transform(np.array([img]))) dist = cdist(zimg.reshape(1, -1), Z) idx = np.argsort(dist) idx = np.array([X_idx[i] for i in idx]) idx = idx[np.where(idx != i2e)] print(Y_pred[i2e]) plt.imshow(X_test[i2e]) plt.show() plt.imshow(X_test[idx[0]]) plt.show() plt.imshow(X_test[idx[-1]]) plt.show()
def main(): random_state = 0 dataset = 'fashion' black_box = 'RF' print(dataset, black_box) path = './' path_models = path + 'models/' path_results = path + 'results/bb/' black_box_filename = path_models + '%s_%s' % (dataset, black_box) results_filename = path_results + '%s_%s.json' % (dataset, black_box) X_train, Y_train, X_test, Y_test, use_rgb = get_dataset(dataset) train_black_box(X_train, Y_train, dataset, black_box, black_box_filename, use_rgb, random_state) bb_predict, bb_predict_proba = get_black_box(black_box, black_box_filename, use_rgb) Y_pred = bb_predict(X_test) acc = accuracy_score(Y_test, Y_pred) cr = classification_report(Y_test, Y_pred) print('Accuracy: %.2f' % acc) print('Classification Report') print(cr) cr = classification_report(Y_test, Y_pred, output_dict=True) res = { 'dataset': dataset, 'black_box': black_box, 'accuracy': acc, 'report': cr } results = open(results_filename, 'w') results.write('%s\n' % json.dumps(res)) results.close()
def main(): dataset = sys.argv[1] black_box = 'RF' neigh_type = 'hrgp' random_state = 0 ae_name = 'aae' num_classes = 10 nbr_experiments = 200 if dataset not in ['mnist', 'cifar10', 'fashion']: print('unknown dataset %s' % dataset) return -1 if black_box not in ['RF', 'AB', 'DNN']: print('unknown black box %s' % black_box) return -1 if neigh_type not in ['rnd', 'gntp', 'hrgp']: print('unknown neigh type %s' % neigh_type) return -1 path = './' path_models = path + 'models/' path_results = path + 'results/rel/' path_aemodels = path + 'aemodels/%s/%s/' % (dataset, ae_name) path_expl = './expl/' black_box_filename = path_models + '%s_%s' % (dataset, black_box) results_filename = path_results + 'rel_%s_%s_%s.json' % (dataset, black_box, neigh_type) expl_filename = path_expl + 'alore_%s_%s_%s.json.gz' % (dataset, black_box, neigh_type) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb, transform = get_black_box(black_box, black_box_filename, use_rgb, return_model=True) bb_predict, bb_predict_proba = get_black_box(black_box, black_box_filename, use_rgb) ae = get_autoencoder(X_test, ae_name, dataset, path_aemodels) ae.load_model() class_name = 'class' class_values = ['%s' % i for i in range(len(np.unique(Y_test)))] explainer = ILOREM(bb_predict, class_name, class_values, neigh_type=neigh_type, use_prob=True, size=1000, ocr=0.1, kernel_width=None, kernel=None, autoencoder=ae, use_rgb=use_rgb, valid_thr=0.5, filter_crules=True, random_state=random_state, verbose=False, alpha1=0.5, alpha2=0.5, metric=neuclidean, ngen=10, mutpb=0.2, cxpb=0.5, tournsize=3, halloffame_ratio=0.1, bb_predict_proba=bb_predict_proba) errors = open(path_results + 'errors_relevancy_%s_%s.csv' % (dataset, black_box), 'w') for i2e in range(nbr_experiments): jrow_rel_o = {'i2e': i2e, 'dataset': dataset, 'black_box': black_box} img = X_test[i2e] bbo = bb_predict(np.array([img])) jrow_list = list() try: # Alore exp = explainer.explain_instance(img, num_samples=1000, use_weights=True, metric=neuclidean) _, diff = exp.get_image_rule(features=None, samples=100) relevancy = 1.0 - np.abs(diff - 127.5)/127.5 for color in [0, 127, 255]: jrow_rel = copy.deepcopy(jrow_rel_o) jrow_rel['method'] = 'alore' jrow_rel['color'] = color jrow_rel = apply_relevancy(jrow_rel, img, bb_predict, bbo[0], relevancy, color) jrow_list.append(jrow_rel) print(datetime.datetime.now(), '[%s/%s] %s %s %s %s - 25: %d, 50: %d, 75: %d' % (i2e, nbr_experiments, dataset, black_box, 'alore', color, jrow_rel['color%s_c25' % color], jrow_rel['color%s_c50' % color], jrow_rel['color%s_c75' % color])) jrow_neigh = {'i2e': i2e, 'dataset': dataset, 'black_box': black_box, 'expl': diff, 'rule': str(exp.rule)} json_str = ('%s\n' % json.dumps(jrow_neigh, cls=NumpyEncoder)).encode('utf-8') with gzip.GzipFile(expl_filename, 'a') as fout: fout.write(json_str) except Exception: print('error instance to explain: %d' % i2e) errors.write('%d\n' % i2e) continue results = open(results_filename, 'a') for jrow in jrow_list: results.write('%s\n' % json.dumps(jrow)) results.close() errors.close()
def main(): dataset = sys.argv[1] black_box = 'DNN' neigh_type = 'hrgp' if len(sys.argv) > 2: start_from = int(sys.argv[2]) else: start_from = 0 random_state = 0 ae_name = 'aae' num_classes = 10 nbr_experiments = 200 if dataset not in ['mnist', 'cifar10', 'fashion']: print('unknown dataset %s' % dataset) return -1 if black_box not in ['RF', 'AB', 'DNN']: print('unknown black box %s' % black_box) return -1 if neigh_type not in ['rnd', 'gntp', 'hrgp']: print('unknown neigh type %s' % neigh_type) return -1 path = './' path_models = path + 'models/' path_results = path + 'results/stability/' path_aemodels = path + 'aemodels/%s/%s/' % (dataset, ae_name) black_box_filename = path_models + '%s_%s' % (dataset, black_box) results_filename = path_results + 'sta_%s_%s_%s.json' % ( dataset, black_box, neigh_type) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb, transform = get_black_box(black_box, black_box_filename, use_rgb, return_model=True) bb_predict, bb_predict_proba = get_black_box(black_box, black_box_filename, use_rgb) Y_pred = bb_predict(X_test) Y_pred_proba = bb_predict_proba(X_test) ae = get_autoencoder(X_test, ae_name, dataset, path_aemodels) ae.load_model() class_name = 'class' class_values = ['%s' % i for i in range(len(np.unique(Y_test)))] explainer = ILOREM(bb_predict, class_name, class_values, neigh_type=neigh_type, use_prob=True, size=1000, ocr=0.1, kernel_width=None, kernel=None, autoencoder=ae, use_rgb=use_rgb, valid_thr=0.5, filter_crules=True, random_state=random_state, verbose=False, alpha1=0.5, alpha2=0.5, metric=neuclidean, ngen=10, mutpb=0.2, cxpb=0.5, tournsize=3, halloffame_ratio=0.1, bb_predict_proba=bb_predict_proba) lime_explainer = lime_image.LimeImageExplainer() segmenter = SegmentationAlgorithm('quickshift', kernel_size=1, max_dist=200, ratio=0.2) input_tensor = bb.layers[0].input last_layer = -2 if dataset == 'mnist' else -1 bb_model = Model(inputs=input_tensor, outputs=bb.layers[last_layer].output) target_tensor = bb_model(input_tensor) de_list = ['grad*input', 'saliency', 'intgrad', 'elrp', 'occlusion'] errors = open( path_results + 'errors_stability_%s_%s.csv' % (dataset, black_box), 'w') with DeepExplain(session=K.get_session()) as de: for i2e in range(nbr_experiments): if i2e < start_from: continue try: print( datetime.datetime.now(), '[%s/%s] %s %s - checking stability' % (i2e, nbr_experiments, dataset, black_box)) expl_list = list() jrow_list = list() jrow_coh_o = { 'i2e': i2e, 'dataset': dataset, 'black_box': black_box } # Crate random noise img = X_test[i2e] bbo = bb_predict(np.array([img])) bbop = Y_pred_proba[i2e] X_random_noise = generate_random_noise(img, bb_predict, bbo[0], nbr_samples=20) # Y_pred_random_noise = bb_predict(X_random_noise) Y_pred_proba_random_noise = bb_predict_proba(X_random_noise) # plt.subplot(1, 3, 1) # plt.imshow(X_random_noise[0], cmap='gray') # plt.subplot(1, 3, 2) # plt.imshow(X_random_noise[1], cmap='gray') # plt.subplot(1, 3, 3) # plt.imshow(X_random_noise[2], cmap='gray') # plt.show() # Alore print(datetime.datetime.now(), 'calculating alore') exp = explainer.explain_instance(img, num_samples=1000, use_weights=True, metric=neuclidean) _, diff = exp.get_image_rule(features=None, samples=100) expl_list.append(diff) # Lime print(datetime.datetime.now(), 'calculating lime') exp = lime_explainer.explain_instance( img, bb_predict_proba, top_labels=1, hide_color=0, num_samples=1000, segmentation_fn=segmenter) _, mask = exp.get_image_and_mask(bbo[0], positive_only=False, num_features=5, hide_rest=False, min_weight=0.01) expl_list.append(mask) # Deep Explain xs = transform(np.array([img])) ys = to_categorical(bbo, num_classes) for det in de_list: print(datetime.datetime.now(), 'calculating %s' % det) if det == 'shapley_sampling': maps = de.explain(det, target_tensor, input_tensor, xs, ys=ys, samples=10)[0] else: maps = de.explain(det, target_tensor, input_tensor, xs, ys=ys)[0] maps = np.mean(maps, axis=2) expl_list.append(maps) lipschitz_list = defaultdict(list) lipschitz_list_bb = defaultdict(list) print(datetime.datetime.now(), 'calculating lipschitz') for i2e1 in range(len(X_random_noise)): img1 = X_random_noise[i2e1] bbo1 = bb_predict(np.array([img1])) bbop1 = Y_pred_proba_random_noise[i2e1] norm_bb = calculate_lipschitz_factor(bbop, bbop1) norm_x = calculate_lipschitz_factor(img, img1) # Alore exp1 = explainer.explain_instance(img1, num_samples=1000, use_weights=True, metric=neuclidean) _, diff1 = exp1.get_image_rule(features=None, samples=100) norm_exp = calculate_lipschitz_factor(expl_list[0], diff1) lipschitz_list['alore'].append(norm_exp / norm_x) lipschitz_list_bb['alore'].append(norm_exp / norm_bb) print(datetime.datetime.now(), '\talore', norm_exp / norm_x) # Lime exp1 = lime_explainer.explain_instance( img1, bb_predict_proba, top_labels=1, hide_color=0, num_samples=1000, segmentation_fn=segmenter) _, mask1 = exp1.get_image_and_mask(bbo[0], positive_only=False, num_features=5, hide_rest=False, min_weight=0.01) norm_exp = calculate_lipschitz_factor(expl_list[1], mask1) lipschitz_list['lime'].append(norm_exp / norm_x) lipschitz_list_bb['lime'].append(norm_exp / norm_bb) print(datetime.datetime.now(), '\tlime', norm_exp / norm_x) # DeepExplain xs1 = transform(np.array([img1])) ys1 = to_categorical(bbo1, num_classes) for i, det in enumerate(de_list): if det == 'shapley_sampling': maps1 = de.explain(det, target_tensor, input_tensor, xs1, ys=ys1, samples=10)[0] else: maps1 = de.explain(det, target_tensor, input_tensor, xs1, ys=ys1)[0] maps1 = np.mean(maps1, axis=2) norm_exp = calculate_lipschitz_factor( expl_list[i + 2], maps1) lipschitz_list[det].append(norm_exp / norm_x) lipschitz_list_bb[det].append(norm_exp / norm_bb) print(datetime.datetime.now(), '\t%s' % det, norm_exp / norm_x) for k in lipschitz_list: jrow_coh = copy.deepcopy(jrow_coh_o) jrow_coh['method'] = k jrow_coh['mean'] = float(np.nanmean(lipschitz_list[k])) jrow_coh['std'] = float(np.nanstd(lipschitz_list[k])) jrow_coh['max'] = float(np.nanmax(lipschitz_list[k])) jrow_coh['mean_bb'] = float( np.nanmean(lipschitz_list_bb[k])) jrow_coh['std_bb'] = float(np.nanstd(lipschitz_list_bb[k])) jrow_coh['max_bb'] = float(np.nanmax(lipschitz_list_bb[k])) jrow_list.append(jrow_coh) print( datetime.datetime.now(), '[%s/%s] %s %s %s - mean: %.3f, max: %.3f' % (i2e, nbr_experiments, dataset, black_box, k, jrow_coh['mean'], jrow_coh['max'])) except Exception: print('error instance to explain: %d' % i2e) errors.write('%d\n' % i2e) continue results = open(results_filename, 'a') for jrow in jrow_list: results.write('%s\n' % json.dumps(jrow)) results.close() errors.close()
def main(): dataset = sys.argv[1] black_box = sys.argv[2] neigh_type = sys.argv[3] # dataset = 'mnist' # black_box = 'DNN' # neigh_type = 'hrgp' max_nbr_exemplars = 128 random_state = 0 ae_name = 'aae' nbr_experiments = 200 if dataset not in ['mnist', 'cifar10', 'fashion']: print('unknown dataset %s' % dataset) return -1 if black_box not in ['RF', 'AB', 'DNN']: print('unknown black box %s' % black_box) return -1 if neigh_type not in ['rnd', 'gntp', 'hrgp']: print('unknown neigh type %s' % neigh_type) return -1 path = './' path_models = path + 'models/' path_results = path + 'results/validity/' path_aemodels = path + 'aemodels/%s/%s/' % (dataset, ae_name) black_box_filename = path_models + '%s_%s' % (dataset, black_box) results_filename = path_results + 'validthr_%s_%s_%s.json' % ( dataset, black_box, neigh_type) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb, transform = get_black_box(black_box, black_box_filename, use_rgb, return_model=True) bb_predict, bb_predict_proba = get_black_box(black_box, black_box_filename, use_rgb) ae = get_autoencoder(X_test, ae_name, dataset, path_aemodels) ae.load_model() Y_pred = bb_predict(X_test) Y_pred_proba = bb_predict_proba(X_test) X_test_comp = X_test[nbr_experiments:] Y_pred_comp = Y_pred[nbr_experiments:] Y_pred_proba_comp = Y_pred_proba[nbr_experiments:] class_name = 'class' class_values = ['%s' % i for i in range(len(np.unique(Y_test)))] errors = open( path_results + 'errors_validity_%s_%s_%s.csv' % (dataset, black_box, neigh_type), 'w') for i2e in range(nbr_experiments): print(datetime.datetime.now(), '[%s/%s] %s %s' % (i2e, nbr_experiments, dataset, black_box)) for valid_thr in np.arange(0.0, 1.0, 0.1): explainer = ILOREM(bb_predict, class_name, class_values, neigh_type=neigh_type, use_prob=True, size=1000, ocr=0.1, kernel_width=None, kernel=None, autoencoder=ae, use_rgb=use_rgb, valid_thr=valid_thr, filter_crules=True, random_state=random_state, verbose=False, alpha1=0.5, alpha2=0.5, metric=neuclidean, ngen=10, mutpb=0.2, cxpb=0.5, tournsize=3, halloffame_ratio=0.1, bb_predict_proba=bb_predict_proba) try: jrow_o = { 'i2e': i2e, 'dataset': dataset, 'black_box': black_box, 'neigh_type': neigh_type, 'valid_thr': valid_thr } jrow_list = list() img = X_test[i2e] bbo = bb_predict(np.array([img])) start_time = datetime.datetime.now() print(datetime.datetime.now(), '\textract explanation', valid_thr) exp = explainer.explain_instance(img, num_samples=1000, use_weights=True, metric=neuclidean) run_time = (datetime.datetime.now() - start_time).total_seconds() jrow_o['time'] = run_time fidelity = exp.fidelity jrow_o['fidelity'] = fidelity print(datetime.datetime.now(), '\tcalculate compactness', valid_thr) res_compactness = get_compactness(img, exp, black_box, transform) compact, compact_var, lcompact, lcompact_var, img_cdist, rdist = res_compactness jrow_o['compactness'] = compact jrow_o['compactness_var'] = compact_var jrow_o['lcompactness'] = lcompact jrow_o['lcompactness_var'] = lcompact_var print(datetime.datetime.now(), '\tcalculate plausibility', valid_thr) plausibility = get_plausibility(img_cdist, black_box, transform, X_test, rdist) for i, p in enumerate(plausibility): jrow_o['plausibility%d' % i] = p print(datetime.datetime.now(), '\tcalculate saliency map', valid_thr) _, diff = exp.get_image_rule(features=None, samples=100) print(datetime.datetime.now(), '\tcalculate relevancy', valid_thr) relevancy = 1.0 - np.abs(diff - 127.5) / 127.5 for color in [0, 127, 255]: jrow_o = apply_relevancy(jrow_o, img, bb_predict, bbo[0], relevancy, color) print(datetime.datetime.now(), '\tcalculate coherence', valid_thr) coherence_lipschitz, coherence_lipschitz_bb = get_lipswhitz_coherence( img, i2e, bb_predict, X_test_comp, Y_pred_comp, Y_pred_proba, Y_pred_proba_comp, diff, explainer) jrow_o['coherence_mean'] = float( np.nanmean(coherence_lipschitz)) jrow_o['coherence_std'] = float(np.nanstd(coherence_lipschitz)) jrow_o['coherence_max'] = float(np.nanmax(coherence_lipschitz)) jrow_o['coherence_mean_bb'] = float( np.nanmean(coherence_lipschitz_bb)) jrow_o['coherence_std_bb'] = float( np.nanstd(coherence_lipschitz_bb)) jrow_o['coherence_max_bb'] = float( np.nanmax(coherence_lipschitz_bb)) print(datetime.datetime.now(), '\tcalculate stability', valid_thr) stability_lipschitz, stability_lipschitz_bb = get_lipswhitz_stability( img, i2e, bb_predict, X_test_comp, Y_pred_proba, Y_pred_proba_comp, diff, explainer) jrow_o['stability_mean'] = float( np.nanmean(stability_lipschitz)) jrow_o['stability_std'] = float(np.nanstd(stability_lipschitz)) jrow_o['stability_max'] = float(np.nanmax(stability_lipschitz)) jrow_o['stability_mean_bb'] = float( np.nanmean(stability_lipschitz_bb)) jrow_o['stability_std_bb'] = float( np.nanstd(stability_lipschitz_bb)) jrow_o['stability_max_bb'] = float( np.nanmax(stability_lipschitz_bb)) print(datetime.datetime.now(), '\tcalculate knn', valid_thr) exemplars = exp.get_prototypes_respecting_rule( num_prototypes=max_nbr_exemplars) cexemplars = exp.get_counterfactual_prototypes(eps=0.01) if len(cexemplars) < max_nbr_exemplars: cexemplars2 = exp.get_prototypes_not_respecting_rule( num_prototypes=max_nbr_exemplars - len(cexemplars)) cexemplars.extend(cexemplars2) X_test_knn, Y_test_knn = prepare_test_for_knn( bbo, X_test_comp, Y_pred_comp, bb_predict, 200) for nbr_exemplars in [1, 2, 4, 8, 16, 32, 64, 128]: jrow_e = copy.deepcopy(jrow_o) jrow_e['nbr_exemplars'] = nbr_exemplars X_train_knn, Y_train_knn = prepare_data_for_knn( exemplars[:nbr_exemplars], cexemplars[:nbr_exemplars], bb_predict(np.array(exemplars[:nbr_exemplars])), bb_predict(np.array(cexemplars[:nbr_exemplars]))) for k in range(1, min(nbr_exemplars + 1, 11)): acc = evaluate_with_knn(X_train_knn, Y_train_knn, X_test_knn, Y_test_knn, k) jrow = copy.deepcopy(jrow_e) jrow['k'] = k jrow['accuracy'] = acc jrow_list.append(jrow) results = open(results_filename, 'a') for jrow in jrow_list: results.write('%s\n' % json.dumps(jrow)) results.close() except Exception: print('error instance to explain: %d' % i2e) errors.write('%d\n' % i2e) continue errors.close()
def main(): dataset = 'mnist' black_box = 'DNN' num_classes = 10 path = './' path_models = path + 'models/' black_box_filename = path_models + '%s_%s' % (dataset, black_box) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb, transform = get_black_box(black_box, black_box_filename, use_rgb, return_model=True) bb_predict, _ = get_black_box(black_box, black_box_filename, use_rgb) i2e = 1 img = X_test[i2e] bbo = bb_predict(np.array([img])) with DeepExplain( session=K.get_session()) as de: # <-- init DeepExplain context # Need to reconstruct the graph in DeepExplain context, using the same weights. # With Keras this is very easy: # 1. Get the input tensor to the original model input_tensor = bb.layers[0].input # print(input_tensor) # 2. We now target the output of the last dense layer (pre-softmax) # To do so, create a new model sharing the same layers untill the last dense (index -2) fModel = Model(inputs=input_tensor, outputs=bb.layers[-2].output) target_tensor = fModel(input_tensor) # print(target_tensor) # print(fModel.summary()) xs = transform(np.array([img])) xs = xs.astype(float) print(xs.shape, xs.dtype) # xs = X_test[0:10] # xs = np.array([rgb2gray(x) for x in xs]) ys = to_categorical(bbo, num_classes) print(len(xs), len(ys), xs.shape, ys.shape) attributions = de.explain('grad*input', target_tensor, input_tensor, xs, ys=ys) # attributions = de.explain('saliency', target_tensor, input_tensor, xs, ys=ys) # attributions = de.explain('intgrad', target_tensor, input_tensor, xs, ys=ys) # attributions = de.explain('deeplift', target_tensor, input_tensor, xs, ys=ys) # attributions = de.explain('elrp', target_tensor, input_tensor, xs, ys=ys) # attributions = de.explain('occlusion', target_tensor, input_tensor, xs, ys=ys) # Compare Gradient * Input with approximate Shapley Values # Note1: Shapley Value sampling with 100 samples per feature (78400 runs) takes a couple of minutes on a GPU. # Note2: 100 samples are not enough for convergence, the result might be affected by sampling variance # attributions = de.explain('shapley_sampling', target_tensor, input_tensor, xs, ys=ys, samples=10) # print(attributions_gradin) # print(attributions_sal) # print(attributions_sal.shape) plot(attributions[0], xi=xs[0], cmap=plt.cm.BrBG) plt.show()
def main(): dataset = sys.argv[1] # dataset = 'mnist' if len(sys.argv) > 2: start_from = int(sys.argv[2]) else: start_from = 0 black_box = 'DNN' neigh_type = 'hrgp' max_nbr_exemplars = 128 random_state = 0 ae_name = 'aae' gamma = None nbr_experiments = 200 if dataset not in ['mnist', 'cifar10', 'fashion']: print('unknown dataset %s' % dataset) return -1 if black_box not in ['RF', 'AB', 'DNN']: print('unknown black box %s' % black_box) return -1 if neigh_type not in ['rnd', 'gntp', 'hrgp']: print('unknown neigh type %s' % neigh_type) return -1 path = './' path_models = path + 'models/' path_results = path + 'results/expcl/' path_aemodels = path + 'aemodels/%s/%s/' % (dataset, ae_name) black_box_filename = path_models + '%s_%s' % (dataset, black_box) results_filename = path_results + 'expcl_%s_%s_%s.json' % (dataset, black_box, neigh_type) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb, transform = get_black_box(black_box, black_box_filename, use_rgb, return_model=True) bb_predict, bb_predict_proba = get_black_box(black_box, black_box_filename, use_rgb) Y_pred = bb_predict(X_test) X_test_comp = X_test[nbr_experiments:] Y_pred_comp = Y_pred[nbr_experiments:] X = np.array([x.ravel() for x in transform(X_test_comp)]) ae = get_autoencoder(X_test, ae_name, dataset, path_aemodels) ae.load_model() class_name = 'class' class_values = ['%s' % i for i in range(len(np.unique(Y_test)))] explainer = ILOREM(bb_predict, class_name, class_values, neigh_type=neigh_type, use_prob=True, size=1000, ocr=0.1, kernel_width=None, kernel=None, autoencoder=ae, use_rgb=use_rgb, valid_thr=0.5, filter_crules=True, random_state=random_state, verbose=False, alpha1=0.5, alpha2=0.5, metric=neuclidean, ngen=10, mutpb=0.2, cxpb=0.5, tournsize=3, halloffame_ratio=0.1, bb_predict_proba=bb_predict_proba) errors = open(path_results + 'errors_expcl_%s_%s.csv' % (dataset, black_box), 'w') for i2e in range(nbr_experiments): if i2e < start_from: continue print(datetime.datetime.now(), '[%s/%s] %s %s' % (i2e, nbr_experiments, dataset, black_box)) try: img = X_test[i2e] bbo = bb_predict(np.array([img])) jrow_o = {'i2e': i2e, 'dataset': dataset, 'black_box': black_box} jrow_list = list() X_test_knn, Y_test_knn = prepare_test_for_knn(bbo, X_test_comp, Y_pred_comp, bb_predict, 200) # Alore print(datetime.datetime.now(), 'alore') exp = explainer.explain_instance(img, num_samples=1000, use_weights=True, metric=neuclidean) # MMD # kernel = rbf_kernel(X, gamma=gamma) print(datetime.datetime.now(), 'mmd') kernel = calculate_kernel_individual(X, Y_pred_comp, gamma) # K-Medoids print(datetime.datetime.now(), 'k-medoids') X_idx = np.where(Y_pred_comp == bbo)[0] Z = X[X_idx] scaler = MinMaxScaler() Z = scaler.fit_transform(Z) zimg = scaler.transform(transform(np.array([img])).ravel().reshape(1, -1)) dist = cdist(zimg.reshape(1, -1), Z) idx_p = np.argsort(dist) idx_p = np.array([X_idx[i] for i in idx_p]) idx_p = idx_p[np.where(idx_p != i2e)] X_idx = np.where(Y_pred_comp != bbo)[0] Z = X[X_idx] scaler = MinMaxScaler() Z = scaler.fit_transform(Z) zimg = scaler.transform(transform(np.array([img])).ravel().reshape(1, -1)) dist = cdist(zimg.reshape(1, -1), Z) idx_n = np.argsort(dist) idx_n = np.array([X_idx[i] for i in idx_n]) idx_n = idx_n[np.where(idx_n != i2e)] # Alore print(datetime.datetime.now(), 'alore - generate exemplars') alore_exemplars = exp.get_prototypes_respecting_rule(num_prototypes=max_nbr_exemplars) alore_cexemplars = exp.get_counterfactual_prototypes(eps=0.01) if len(alore_cexemplars) < max_nbr_exemplars: cexemplars2 = exp.get_prototypes_not_respecting_rule(num_prototypes=max_nbr_exemplars - len(alore_cexemplars)) alore_cexemplars.extend(cexemplars2) # MMD print(datetime.datetime.now(), 'mmd - select prototypes') proto_idx = greedy_select_protos(kernel, np.array(range(np.shape(kernel)[0])), nbr_prototypes=max_nbr_exemplars) crit_idx = select_criticism_regularized(kernel, proto_idx, nbr_criticisms=max_nbr_exemplars, is_K_sparse=False, reg='logdet') proto_idx_sel = [i for i in proto_idx if Y_pred_comp[i] == bbo[0]][:max_nbr_exemplars] crit_idx_sel = [i for i in crit_idx if Y_pred_comp[i] != bbo[0]][:max_nbr_exemplars] mmd_exemplars = X_test_comp[proto_idx_sel] mmd_cexemplars = X_test_comp[crit_idx_sel] # K-Medoids print(datetime.datetime.now(), 'k-medoids - select prototypes') kmedoids_exemplars = X_test_comp[idx_p[:max_nbr_exemplars]] kmedoids_cexemplars = X_test_comp[idx_n[:max_nbr_exemplars]] for nbr_exemplars in [1, 2, 4, 8, 16, 32, 64, 128]: jrow_e = copy.deepcopy(jrow_o) jrow_e['nbr_exemplars'] = nbr_exemplars X_train_knn, Y_train_knn = prepare_data_for_knn(alore_exemplars[:nbr_exemplars], alore_cexemplars[:nbr_exemplars], bb_predict(np.array(alore_exemplars[:nbr_exemplars])), bb_predict(np.array(alore_cexemplars[:nbr_exemplars]))) for k in range(1, min(nbr_exemplars + 1, 11)): jrow = copy.deepcopy(jrow_e) acc = evaluate_with_knn(X_train_knn, Y_train_knn, X_test_knn, Y_test_knn, k) jrow['method'] = 'alore' jrow['k'] = k jrow['accuracy'] = acc jrow_list.append(jrow) print(datetime.datetime.now(), '[%s/%s] %s %s %s - alore: %.3f' % (i2e, nbr_experiments, dataset, black_box, k, acc)) X_train_knn, Y_train_knn = prepare_data_for_knn(mmd_exemplars[:nbr_exemplars], mmd_cexemplars[:nbr_exemplars], bb_predict(np.array(mmd_exemplars[:nbr_exemplars])), bb_predict(np.array(mmd_cexemplars[:nbr_exemplars]))) for k in range(1, min(nbr_exemplars + 1, 11)): jrow = copy.deepcopy(jrow_e) acc = evaluate_with_knn(X_train_knn, Y_train_knn, X_test_knn, Y_test_knn, k) jrow['method'] = 'mmd' jrow['k'] = k jrow['accuracy'] = acc jrow_list.append(jrow) print(datetime.datetime.now(), '[%s/%s] %s %s %s - mmd: %.3f' % (i2e, nbr_experiments, dataset, black_box, k, acc)) X_train_knn, Y_train_knn = prepare_data_for_knn(kmedoids_exemplars[:nbr_exemplars], kmedoids_cexemplars[:nbr_exemplars], bb_predict(np.array(kmedoids_exemplars[:nbr_exemplars])), bb_predict(np.array(kmedoids_cexemplars[:nbr_exemplars]))) for k in range(1, min(nbr_exemplars + 1, 11)): jrow = copy.deepcopy(jrow_e) acc = evaluate_with_knn(X_train_knn, Y_train_knn, X_test_knn, Y_test_knn, k) jrow['method'] = 'k-medoids' jrow['k'] = k jrow['accuracy'] = acc jrow_list.append(jrow) print(datetime.datetime.now(), '[%s/%s] %s %s %s - k-medoids: %.3f' % (i2e, nbr_experiments, dataset, black_box, k, acc)) except Exception: print('error instance to explain: %d' % i2e) errors.write('%d\n' % i2e) continue results = open(results_filename, 'a') for jrow in jrow_list: results.write('%s\n' % json.dumps(jrow)) results.close() errors.close()
def main(): dataset = sys.argv[1] # dataset = 'mnist' black_box = 'RF' neigh_type = 'hrgp' random_state = 0 ae_name = 'aae' num_classes = 10 nbr_experiments = 200 if dataset not in ['mnist', 'cifar10', 'fashion']: print('unknown dataset %s' % dataset) return -1 if black_box not in ['RF', 'AB', 'DNN']: print('unknown black box %s' % black_box) return -1 if neigh_type not in ['rnd', 'gntp', 'hrgp']: print('unknown neigh type %s' % neigh_type) return -1 path = './' path_models = path + 'models/' path_results = path + 'results/coherence/' path_aemodels = path + 'aemodels/%s/%s/' % (dataset, ae_name) black_box_filename = path_models + '%s_%s' % (dataset, black_box) results_filename = path_results + 'coh_%s_%s_%s.json' % ( dataset, black_box, neigh_type) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb, transform = get_black_box(black_box, black_box_filename, use_rgb, return_model=True) bb_predict, bb_predict_proba = get_black_box(black_box, black_box_filename, use_rgb) Y_pred = bb_predict(X_test) Y_pred_proba = bb_predict_proba(X_test) X_test_comp = X_test[nbr_experiments:] Y_pred_comp = Y_pred[nbr_experiments:] Y_pred_proba_comp = Y_pred_proba[nbr_experiments:] ae = get_autoencoder(X_test, ae_name, dataset, path_aemodels) ae.load_model() class_name = 'class' class_values = ['%s' % i for i in range(len(np.unique(Y_test)))] explainer = ILOREM(bb_predict, class_name, class_values, neigh_type=neigh_type, use_prob=True, size=1000, ocr=0.1, kernel_width=None, kernel=None, autoencoder=ae, use_rgb=use_rgb, valid_thr=0.5, filter_crules=True, random_state=random_state, verbose=False, alpha1=0.5, alpha2=0.5, metric=neuclidean, ngen=10, mutpb=0.2, cxpb=0.5, tournsize=3, halloffame_ratio=0.1, bb_predict_proba=bb_predict_proba) lime_explainer = lime_image.LimeImageExplainer() segmenter = SegmentationAlgorithm('quickshift', kernel_size=1, max_dist=200, ratio=0.2) errors = open( path_results + 'errors_coehrence_%s_%s.csv' % (dataset, black_box), 'w') for i2e in range(nbr_experiments): try: expl_list = list() jrow_list = list() jrow_coh_o = { 'i2e': i2e, 'dataset': dataset, 'black_box': black_box } # Finding Lipswhitz neighborhood img = X_test[i2e] bbo = bb_predict(np.array([img])) bbop = Y_pred_proba[i2e] X_idx = np.where(Y_pred_comp == bbo[0])[0] scaler = MinMaxScaler() x0 = scaler.fit_transform(img.ravel().reshape(-1, 1)) Xj = scaler.fit_transform([x.ravel() for x in X_test_comp[X_idx]]) dist = cdist(x0.reshape(1, -1), Xj)[0] eps = np.percentile(dist, 5) X_idx_eps = X_idx[np.where(dist <= eps)] # Alore exp = explainer.explain_instance(img, num_samples=1000, use_weights=True, metric=neuclidean) _, diff = exp.get_image_rule(features=None, samples=100) expl_list.append(diff) # Lime exp = lime_explainer.explain_instance(img, bb_predict_proba, top_labels=1, hide_color=0, num_samples=1000, segmentation_fn=segmenter) _, mask = exp.get_image_and_mask(bbo[0], positive_only=False, num_features=5, hide_rest=False, min_weight=0.01) expl_list.append(mask) lipschitz_list = defaultdict(list) lipschitz_list_bb = defaultdict(list) print( datetime.datetime.now(), '[%s/%s] %s %s - checking coherence' % (i2e, nbr_experiments, dataset, black_box)) for i2e1 in X_idx_eps[:20]: img1 = X_test_comp[i2e1] bbo1 = bb_predict(np.array([img1])) bbop1 = Y_pred_proba_comp[i2e1] norm_bb = calculate_lipschitz_factor(bbop, bbop1) norm_x = calculate_lipschitz_factor(img, img1) # Alore exp1 = explainer.explain_instance(img1, num_samples=1000, use_weights=True, metric=neuclidean) _, diff1 = exp1.get_image_rule(features=None, samples=100) norm_exp = calculate_lipschitz_factor(expl_list[0], diff1) lipschitz_list['alore'].append(norm_exp / norm_x) lipschitz_list_bb['alore'].append(norm_exp / norm_bb) print(datetime.datetime.now(), '\talore', norm_exp / norm_x) # Lime exp1 = lime_explainer.explain_instance( img1, bb_predict_proba, top_labels=1, hide_color=0, num_samples=1000, segmentation_fn=segmenter) _, mask1 = exp1.get_image_and_mask(bbo[0], positive_only=False, num_features=5, hide_rest=False, min_weight=0.01) norm_exp = calculate_lipschitz_factor(expl_list[1], mask1) lipschitz_list['lime'].append(norm_exp / norm_x) lipschitz_list_bb['lime'].append(norm_exp / norm_bb) print(datetime.datetime.now(), '\tlime', norm_exp / norm_x) for k in lipschitz_list: jrow_coh = copy.deepcopy(jrow_coh_o) jrow_coh['method'] = k jrow_coh['mean'] = float(np.nanmean(lipschitz_list[k])) jrow_coh['std'] = float(np.nanstd(lipschitz_list[k])) jrow_coh['max'] = float(np.nanmax(lipschitz_list[k])) jrow_coh['mean_bb'] = float(np.nanmean(lipschitz_list_bb[k])) jrow_coh['std_bb'] = float(np.nanstd(lipschitz_list_bb[k])) jrow_coh['max_bb'] = float(np.nanmax(lipschitz_list_bb[k])) jrow_list.append(jrow_coh) print( datetime.datetime.now(), '[%s/%s] %s %s %s - mean: %.3f, max: %.3f' % (i2e, nbr_experiments, dataset, black_box, k, jrow_coh['mean'], jrow_coh['max'])) except Exception: print('error instance to explain: %d' % i2e) errors.write('%d\n' % i2e) continue results = open(results_filename, 'a') for jrow in jrow_list: results.write('%s\n' % json.dumps(jrow)) results.close()
def main(): dataset = sys.argv[1] black_box = sys.argv[2] # dataset = 'mnist' # black_box = 'RF' nbr_experiments = 200 if dataset not in ['mnist', 'cifar10', 'fashion']: print('unknown dataset %s' % dataset) return -1 if black_box not in ['RF', 'AB', 'DNN']: print('unknown black box %s' % black_box) return -1 path = './' path_models = path + 'models/' path_results = path + 'results/fcp/' path_neigh = './neigh/' black_box_filename = path_models + '%s_%s' % (dataset, black_box) results_filename = path_results + 'lime_p_%s_%s.json' % (dataset, black_box) neigh_filename = path_neigh + 'lime_%s_%s.json' % (dataset, black_box) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb, transform = get_black_box(black_box, black_box_filename, use_rgb, return_model=True) bb_predict, bb_predict_proba = get_black_box(black_box, black_box_filename, use_rgb) lime_explainer = lime_image.LimeImageExplainer() segmenter = SegmentationAlgorithm('quickshift', kernel_size=1, max_dist=200, ratio=0.2) for i2e in range(nbr_experiments): img = X_test[i2e] start_time = datetime.datetime.now() exp = lime_explainer.explain_instance(img, bb_predict_proba, top_labels=1, hide_color=0, num_samples=1000, segmentation_fn=segmenter) run_time = (datetime.datetime.now() - start_time).total_seconds() label = bb_predict(np.array([X_test[i2e]]))[0] bb_probs = lime_explainer.Zl[:, label] lr_probs = lime_explainer.lr.predict(lime_explainer.Zlr) fidelity = 1 - np.sum( np.abs(bb_probs - lr_probs) < 0.01) / len(bb_probs) img_cdist = transform(np.array([img])) Z_cdist = transform(lime_explainer.Z) if black_box == 'DNN': img_cdist = np.array([x.ravel() for x in img_cdist]) Z_cdist = np.array([x.ravel() for x in Z_cdist]) rdist = cdist(img_cdist, Z_cdist, metric='euclidean') compact, compact_var = float(np.mean(rdist)), float(np.std(rdist)) sdist = pairwise_distances(lime_explainer.Zlr, np.array([lime_explainer.Zlr[0]]), metric='cosine').ravel() lcompact, lcompact_var = float(np.mean(sdist)), float(np.std(sdist)) X_test_cdist = transform(X_test) if black_box == 'DNN': X_test_cdist = np.array([x.ravel() for x in X_test_cdist]) dist = cdist(img_cdist, X_test_cdist, metric='euclidean') nbr_real_instances = len(X_test) plausibility = calculate_plausibilities(rdist, dist, nbr_real_instances) print( datetime.datetime.now(), '[%s/%s] %s %s - f: %.2f, c: %.2f, lc: %.2f, p: %.2f' % (i2e, nbr_experiments, dataset, black_box, fidelity, compact, lcompact, plausibility[-2])) Z = lime_explainer.Z Zl = lime_explainer.Zlr store_fcpn(i2e, results_filename, neigh_filename, dataset, black_box, fidelity, compact, compact_var, lcompact, lcompact_var, plausibility, run_time, Z, Zl, 'rnd')
def main(): random_state = 0 dataset = 'fashion' black_box = 'RF' ae_name = 'aae' path = './' path_models = path + 'models/' path_aemodels = path + 'aemodels/%s/%s/' % (dataset, ae_name) black_box_filename = path_models + '%s_%s' % (dataset, black_box) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb_predict, bb_predict_proba = get_black_box(black_box, black_box_filename, use_rgb) ae = get_autoencoder(X_test, ae_name, dataset, path_aemodels) ae.load_model() class_name = 'class' class_values = ['%s' % i for i in range(len(np.unique(Y_test)))] i2e = 10 img = X_test[i2e] explainer = ILOREM(bb_predict, class_name, class_values, neigh_type='rnd', use_prob=True, size=1000, ocr=0.1, kernel_width=None, kernel=None, autoencoder=ae, use_rgb=use_rgb, valid_thr=0.5, filter_crules=True, random_state=random_state, verbose=True, alpha1=0.5, alpha2=0.5, metric=neuclidean, ngen=10, mutpb=0.2, cxpb=0.5, tournsize=3, halloffame_ratio=0.1, bb_predict_proba=bb_predict_proba) exp = explainer.explain_instance(img, num_samples=1000, use_weights=True, metric=neuclidean) print('e = {\n\tr = %s\n\tc = %s \n}' % (exp.rstr(), exp.cstr())) print(exp.bb_pred, exp.dt_pred, exp.fidelity) print(exp.limg) img2show, mask = exp.get_image_rule(features=None, samples=10) if use_rgb: plt.imshow(img2show, cmap='gray') else: plt.imshow(img2show) bbo = bb_predict(np.array([img2show]))[0] plt.title('image to explain - black box %s' % bbo) plt.show() # if use_rgb: # plt.imshow(img2show, cmap='gray') # else: # plt.imshow(img2show) dx, dy = 0.05, 0.05 xx = np.arange(0.0, img2show.shape[1], dx) yy = np.arange(0.0, img2show.shape[0], dy) xmin, xmax, ymin, ymax = np.amin(xx), np.amax(xx), np.amin(yy), np.amax(yy) extent = xmin, xmax, ymin, ymax cmap_xi = plt.get_cmap('Greys_r') cmap_xi.set_bad(alpha=0) # Compute edges (to overlay to heatmaps later) percentile = 100 dilation = 3.0 alpha = 0.8 xi_greyscale = img2show if len(img2show.shape) == 2 else np.mean(img2show, axis=-1) in_image_upscaled = transform.rescale(xi_greyscale, dilation, mode='constant') edges = feature.canny(in_image_upscaled).astype(float) edges[edges < 0.5] = np.nan edges[:5, :] = np.nan edges[-5:, :] = np.nan edges[:, :5] = np.nan edges[:, -5:] = np.nan overlay = edges # abs_max = np.percentile(np.abs(data), percentile) # abs_min = abs_max # plt.pcolormesh(range(mask.shape[0]), range(mask.shape[1]), mask, cmap=plt.cm.BrBG, alpha=1, vmin=0, vmax=255) plt.imshow(mask, extent=extent, cmap=plt.cm.BrBG, alpha=1, vmin=0, vmax=255) plt.imshow(overlay, extent=extent, interpolation='none', cmap=cmap_xi, alpha=alpha) plt.axis('off') plt.title('attention area respecting latent rule') plt.show()
def main(): dataset = 'mnist' black_box = 'RF' path = './' path_models = path + 'models/' black_box_filename = path_models + '%s_%s' % (dataset, black_box) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb_predict, bb_predict_proba = get_black_box(black_box, black_box_filename, use_rgb) lime_explainer = lime_image.LimeImageExplainer() segmenter = SegmentationAlgorithm('quickshift', kernel_size=1, max_dist=200, ratio=0.2) i2e = 1 img = X_test[i2e] exp = lime_explainer.explain_instance(img, bb_predict_proba, top_labels=1, hide_color=0, num_samples=1000, segmentation_fn=segmenter) print(exp.local_exp) print(exp.local_pred) # print(lime_explainer.Zlr) # print(lime_explainer.Zl) label = bb_predict(np.array([X_test[i2e]]))[0] print(label) # print(lime_explainer.Zl[:, label][0]) # print(lime_explainer.lr.predict(lime_explainer.Zlr)[0]) bb_probs = lime_explainer.Zl[:, label] lr_probs = lime_explainer.lr.predict(lime_explainer.Zlr) print(1 - np.sum(np.abs(np.round(bb_probs) - np.round(lr_probs))) / len(bb_probs)) img2show, mask = exp.get_image_and_mask(Y_test[i2e], positive_only=False, num_features=5, hide_rest=False, min_weight=0.01) plt.imshow(label2rgb(mask, img2show, bg_label=0), interpolation='nearest') plt.show() img2show, mask = exp.get_image_and_mask(Y_test[i2e], positive_only=True, num_features=5, hide_rest=True, min_weight=0.01) plt.imshow(img2show.astype(np.int), cmap=None if use_rgb else 'gray') plt.show()
def main(): dataset = sys.argv[1] black_box = sys.argv[2] neigh_type = sys.argv[3] if len(sys.argv) > 4: start_from = int(sys.argv[4]) else: start_from = 0 # dataset = 'mnist' # black_box = 'DNN' # neigh_type = 'hrgp' random_state = 0 ae_name = 'aae' nbr_experiments = 200 if dataset not in ['mnist', 'cifar10', 'fashion']: print('unknown dataset %s' % dataset) return -1 if black_box not in ['RF', 'AB', 'DNN']: print('unknown black box %s' % black_box) return -1 if neigh_type not in ['rnd', 'gntp', 'hrgp']: print('unknown neigh type %s' % neigh_type) return -1 path = './' path_models = path + 'models/' path_results = path + 'results/fcp/' path_aemodels = path + 'aemodels/%s/%s/' % (dataset, ae_name) path_neigh = './neigh/' black_box_filename = path_models + '%s_%s' % (dataset, black_box) results_filename = path_results + 'alore_p_%s_%s_%s.json' % ( dataset, black_box, neigh_type) neigh_filename = path_neigh + 'alore_%s_%s_%s.json.gz' % ( dataset, black_box, neigh_type) _, _, X_test, Y_test, use_rgb = get_dataset(dataset) bb, transform = get_black_box(black_box, black_box_filename, use_rgb, return_model=True) bb_predict, bb_predict_proba = get_black_box(black_box, black_box_filename, use_rgb) ae = get_autoencoder(X_test, ae_name, dataset, path_aemodels) ae.load_model() class_name = 'class' class_values = ['%s' % i for i in range(len(np.unique(Y_test)))] explainer = ILOREM(bb_predict, class_name, class_values, neigh_type=neigh_type, use_prob=True, size=1000, ocr=0.1, kernel_width=None, kernel=None, autoencoder=ae, use_rgb=use_rgb, valid_thr=0.5, filter_crules=True, random_state=random_state, verbose=False, alpha1=0.5, alpha2=0.5, metric=neuclidean, ngen=10, mutpb=0.2, cxpb=0.5, tournsize=3, halloffame_ratio=0.1, bb_predict_proba=bb_predict_proba) errors = open( path_results + 'errors_alore_%s_%s_%s.csv' % (dataset, black_box, neigh_type), 'w') for i2e in range(nbr_experiments): if i2e < start_from: continue img = X_test[i2e] start_time = datetime.datetime.now() try: exp = explainer.explain_instance(img, num_samples=1000, use_weights=True, metric=neuclidean) except Exception: print('error instance to explain: %d' % i2e) errors.write('%d\n' % i2e) errors.flush() continue run_time = (datetime.datetime.now() - start_time).total_seconds() fidelity = exp.fidelity img_cdist = transform(np.array([img])) Zl = exp.Z Z = exp.autoencoder.decode(Zl) Z_cdist = transform(Z) if black_box == 'DNN': img_cdist = np.array([x.ravel() for x in img_cdist]) Z_cdist = np.array([x.ravel() for x in Z_cdist]) rdist = cdist(img_cdist, Z_cdist, metric='euclidean') compact, compact_var = float(np.mean(rdist)), float(np.std(rdist)) sdist = cdist(np.array([exp.Z[0]]), exp.Z, metric=neuclidean) lcompact, lcompact_var = float(np.mean(sdist)), float(np.std(sdist)) X_test_cdist = transform(X_test) if black_box == 'DNN': X_test_cdist = np.array([x.ravel() for x in X_test_cdist]) dist = cdist(img_cdist, X_test_cdist, metric='euclidean') nbr_real_instances = len(X_test) plausibility = calculate_plausibilities(rdist, dist, nbr_real_instances) print( datetime.datetime.now(), '[%s/%s] %s %s %s - f: %.2f, c: %.2f, lc: %.2f, p: %.2f' % (i2e, nbr_experiments, dataset, black_box, neigh_type, fidelity, compact, lcompact, plausibility[-2])) store_fcpn(i2e, results_filename, neigh_filename, dataset, black_box, fidelity, compact, compact_var, lcompact, lcompact_var, plausibility, run_time, Z, Zl, neigh_type) errors.close()