Exemple #1
0
def test_uninitialized_experiment(tmp_path):

    path = os.path.join(tmp_path.resolve().as_posix(), "test")

    with pytest.raises(expmgr.exception.ProjectUninitializedException):
        expmgr.get_experiment()

    expmgr.init(path)

    with pytest.raises(expmgr.exception.ExperimentUninitializedExcpetion):
        expmgr.get_experiment()
Exemple #2
0
parser.add_argument('--version',
                    type=int,
                    default=1,
                    choices=[1, 2],
                    help='qnnops version (Default: 1)')
args = parser.parse_args()

seed = args.seed
n_qubits, max_n_layers, rot_axis = args.n_qubits, args.max_n_layers, args.rot_axis
block_size = args.n_qubits
sample_size = args.sample_size
g, h = args.g, args.h

if not args.exp_name:
    args.exp_name = f'Q{n_qubits}R{rot_axis}BS{block_size} - g{g}h{h} - S{seed} - SN{sample_size}'
expmgr.init(project='IsingBP', name=args.exp_name, config=args)

# Construct the hamiltonian matrix of Ising model.
ham_matrix = qnnops.ising_hamiltonian(n_qubits, g, h)

rng = jax.random.PRNGKey(seed)  # Set of random seeds for parameter sampling

M = int(log2(max_n_layers))
for i in range(1, M + 1):
    n_layers = 2**i
    print(f'{n_qubits} Qubits & {n_layers} Layers ({i}/{M})')

    def loss(_params):
        ansatz_state = qnnops.alternating_layer_ansatz(_params, n_qubits,
                                                       block_size, n_layers,
                                                       rot_axis)
Exemple #3
0
def test_init(tmp_path):
    path = os.path.join(tmp_path.resolve().as_posix(), "test")

    assert not os.path.exists(path)
    expmgr.init(path)
    assert os.path.exists(path)
Exemple #4
0
def project(tmp_path):
    path = os.path.join(tmp_path.resolve().as_posix(), "test")
    expmgr.init(path)
    return expmgr.get_project()
Exemple #5
0
def main():
    parser = argparse.ArgumentParser('Mode Connectivity')
    parser.add_argument('--n-qubits',
                        type=int,
                        metavar='N',
                        required=True,
                        help='Number of qubits')
    parser.add_argument('--n-layers',
                        type=int,
                        metavar='N',
                        required=True,
                        help='Number of alternating layers')
    parser.add_argument('--rot-axis',
                        type=str,
                        metavar='R',
                        required=True,
                        choices=['x', 'y', 'z'],
                        help='Direction of rotation gates.')
    parser.add_argument('--g',
                        type=float,
                        metavar='M',
                        required=True,
                        help='Transverse magnetic field')
    parser.add_argument('--h',
                        type=float,
                        metavar='M',
                        required=True,
                        help='Longitudinal magnetic field')
    parser.add_argument('--n-bends',
                        type=int,
                        metavar='N',
                        default=3,
                        help='Number of bends between endpoints')
    parser.add_argument('--train-steps',
                        type=int,
                        metavar='N',
                        default=int(1e3),
                        help='Number of training steps. (Default: 1000)')
    parser.add_argument('--batch-size',
                        type=int,
                        metavar='N',
                        default=8,
                        help='Batch size. (Default: 8)')
    parser.add_argument('--lr',
                        type=float,
                        metavar='LR',
                        default=0.05,
                        help='Initial value of learning rate. (Default: 0.05)')
    parser.add_argument('--log-every',
                        type=int,
                        metavar='N',
                        default=1,
                        help='Logging every N steps. (Default: 1)')
    parser.add_argument(
        '--seed',
        type=int,
        metavar='N',
        required=True,
        help='Random seed. For reproducibility, the value is set explicitly.')
    parser.add_argument('--model-seeds',
                        type=int,
                        metavar='N',
                        nargs=2,
                        required=True,
                        help='Random seed used for model training.')
    parser.add_argument('--exp-name',
                        type=str,
                        metavar='NAME',
                        default=None,
                        help='Experiment name.')
    parser.add_argument(
        '--scheduler-name',
        type=str,
        metavar='NAME',
        default='exponential_decay',
        help=f'Scheduler name. Supports: {qnnops.supported_schedulers()} '
        f'(Default: constant)')
    parser.add_argument(
        '--params-start',
        type=str,
        metavar='PATH',
        help='A file path of a checkpoint where the curve starts from')
    parser.add_argument(
        '--params-end',
        type=str,
        metavar='PATH',
        help='A file path of a checkpoint where the curve ends')
    parser.add_argument('--no-jit',
                        dest='use_jit',
                        action='store_false',
                        help='Disable jit option to loss function.')
    parser.add_argument('--no-time-tag',
                        dest='time_tag',
                        action='store_false',
                        help='Omit the time tag from experiment name.')
    parser.add_argument('--quiet',
                        action='store_true',
                        help='Quite mode (No training logs)')
    args = parser.parse_args()

    n_qubits, n_layers = args.n_qubits, args.n_layers
    if args.exp_name is None:
        args.exp_name = f'Q{n_qubits}L{n_layers}_nB{args.n_bends}'

    if args.model_seeds is None:
        params_start, params_end = args.params_start, args.params_end
    else:
        params_start, params_end = download_checkpoints(
            'checkpoints',
            n_qubits=n_qubits,
            n_layers=n_layers,
            lr=0.05,  # fixed lr that we used in training
            seed={'$in': args.model_seeds})

    print('Initializing project')
    expmgr.init('ModeConnectivity', args.exp_name, args)

    print('Loading pretrained models')
    w1 = jnp.load(params_start)
    w2 = jnp.load(params_end)
    expmgr.save_array('endpoint_begin.npy', w1)
    expmgr.save_array('endpoint_end.npy', w2)

    print('Constructing Hamiltonian matrix')
    ham_matrix = qnnops.ising_hamiltonian(n_qubits=n_qubits,
                                          g=args.g,
                                          h=args.h)

    print('Define the loss function')

    def loss_fn(params):
        ansatz_state = qnnops.alternating_layer_ansatz(params, n_qubits,
                                                       n_qubits, n_layers,
                                                       args.rot_axis)
        return qnnops.energy(ham_matrix, ansatz_state)

    find_connected_curve(w1,
                         w2,
                         loss_fn,
                         n_bends=args.n_bends,
                         train_steps=args.train_steps,
                         lr=args.lr,
                         scheduler_name=args.scheduler_name,
                         batch_size=args.batch_size,
                         log_every=1,
                         seed=args.seed,
                         use_jit=args.use_jit)
Exemple #6
0
                         'This option works only with --no-time-tag.')
parser.add_argument('--no-jit', dest='use_jit', action='store_false',
                    help='Disable jit option to loss function.')
parser.add_argument('--no-time-tag', dest='time_tag', action='store_false',
                    help='Omit the time tag from experiment name.')
parser.add_argument('--use-jacfwd', dest='use_jacfwd', action='store_true',
                    help='Enable the forward mode gradient computation (jacfwd).')
parser.add_argument('--version', type=int, default=1, choices=[1, 2],
                    help='qnnops version (Default: 1)')

args = parser.parse_args()
seed = args.seed
n_qubits, n_layers, rot_axis = args.n_qubits, args.n_layers, args.rot_axis
block_size = args.n_qubits
exp_name = args.exp_name or f'Q{n_qubits}L{n_layers}R{rot_axis}BS{block_size} - S{seed} - LR{args.lr}'
expmgr.init(project='expressibility', name=exp_name, config=args)

target_state = qnnops.create_target_states(n_qubits, 1, seed=seed)
expmgr.log_array(target_state=target_state)
expmgr.save_array('target_state.npy', target_state)


def circuit(params):
    return qnnops.alternating_layer_ansatz(
        params, n_qubits=n_qubits, block_size=block_size, n_layers=n_layers, rot_axis=rot_axis)


def loss_fn(params):
    ansatz_state = circuit(params)
    return qnnops.state_norm(ansatz_state - target_state) / (2 ** n_qubits)
Exemple #7
0
    help='Experiment name. If None, the default format will be used.')
parser.add_argument('--version',
                    type=int,
                    default=1,
                    choices=[1, 2],
                    help='qnnops version (Default: 1)')
args = parser.parse_args()

seed, seed_SYK = args.seed, args.seed_SYK
n_qubits, max_n_layers, rot_axis = args.n_qubits, args.max_n_layers, args.rot_axis
block_size = args.n_qubits
sample_size = args.sample_size

if not args.exp_name:
    args.exp_name = f'SYK4 - Q{n_qubits}R{rot_axis}BS{block_size} -  SYK{seed_SYK} - S{seed} - SN{sample_size}'
expmgr.init(project='SYK4BP', name=args.exp_name, config=args)

# Construct the hamiltonian matrix of Ising model.
ham_matrix = qnnops.SYK_hamiltonian(jax.random.PRNGKey(args.seed_SYK),
                                    n_qubits)
expmgr.save_array('hamiltonian_matrix.npy', ham_matrix, upload_to_wandb=True)

rng = jax.random.PRNGKey(seed)  # Set of random seeds for parameter sampling

M = int(log2(max_n_layers))
for i in range(1, M + 1):
    n_layers = 2**i
    print(f'{n_qubits} Qubits & {n_layers} Layers ({i}/{M})')

    def loss(_params):
        ansatz_state = qnnops.alternating_layer_ansatz(_params, n_qubits,
                    help='Random seed. For reproducibility, the value is set explicitly.')
parser.add_argument('--jax-enable-x64', action='store_true',
                    help='Enable jax x64 option.')
parser.add_argument('--exp-name', type=str, metavar='NAME', default=None,
                    help='Experiment name. If None, the default format will be used.')
args = parser.parse_args()


seed, seed_SYK = args.seed, args.seed_SYK
n_qubits, n_layers, rot_axis = args.n_qubits, args.n_layers, args.rot_axis
block_size = args.block_size
sample_size = args.sample_size

if not args.exp_name:
    args.exp_name = f'SYK4 - Q{n_qubits}L{n_layers}R{rot_axis}BS{block_size} -  SYK{seed_SYK} - S{seed} - SN{sample_size}'
expmgr.init(project='VanishingGrad', name=args.exp_name, config=args)


# Construct the gamma matrices for SO(2 * n_qubits) Clifford algebra
gamma_matrices, n_gamma = [], 2 * n_qubits

for k in range(n_gamma):
    temp = jnp.eye(1)
    
    for j in range(k//2):
        temp = jnp.kron(temp, qnnops.PauliBasis[3])
        
    if k % 2 == 0:
        temp = jnp.kron(temp, qnnops.PauliBasis[1])
    else:
        temp = jnp.kron(temp, qnnops.PauliBasis[2])