Exemple #1
0
def build_longitudinal_consensus(labels_dir_1,
                                 labels_dir_2,
                                 result_dir,
                                 recompute=True):

    # create result dir
    utils.mkdir(result_dir)

    # list all segmentations
    path_labels_1 = utils.list_files(labels_dir_1)
    path_labels_2 = utils.list_files(labels_dir_2)

    for path_lab_1, path_lab_2 in zip(path_labels_1, path_labels_2):

        # check if result is already saved
        path_result = os.path.join(result_dir, os.path.basename(path_lab_1))
        if (not os.path.isfile(path_result)) | recompute:

            # load volumes
            lab_1, aff, h = utils.load_volume(path_lab_1, im_only=False)
            lab_2 = utils.load_volume(path_lab_2)

            # compute and save consensus
            dist_masp_1 = edit_volumes.compute_distance_map(lab_1,
                                                            crop_margin=20)
            dist_masp_2 = edit_volumes.compute_distance_map(lab_2,
                                                            crop_margin=20)
            consensus = (np.mean(np.stack([dist_masp_1, dist_masp_2], axis=-1),
                                 axis=-1) > 0) * 1
            utils.save_volume(consensus, aff, h, path_result)
Exemple #2
0
def validate_training(image_dir,
                      gt_dir,
                      models_dir,
                      validation_main_dir,
                      path_label_list,
                      step_eval=1,
                      cropping=None,
                      conv_size=3,
                      n_levels=5,
                      nb_conv_per_level=2,
                      feat_multiplier=1,
                      activation='elu',
                      recompute=True):
    """This function validates models saved at different epochs of the same training.
    All models are assumed to be in the same folder.contained in models_dir.
    The results of each model are saved in a subfolder in validation_main_dir.
    :param image_dir: path of the folder with validation images.
    :param gt_dir: path of the folder with ground truth label maps.
    These are matched to the validation images by sorting order.
    :param models_dir: path of the folder with the models to validate.
    :param validation_main_dir: path of the folder where all the models validation subfolders will be saved.
    :param path_label_list: path of the numpy array containing all the label values to validate on.
    :param step_eval: (optional) If step_eval > 1 skips models when validating, by validating on models step_eval apart.
    :param cropping: (optional) whether to crop the input to smaller size while being run through the network.
    The result is then given in the original image space. Can be an int, a sequence, or a 1d numpy array.
    :param n_levels: (optional) number of level for the Unet. Default is 5.
    :param nb_conv_per_level: (optional) number of convolutional layers per level. Default is 2.
    :param conv_size: (optional) size of the convolution kernels. Default is 2.
    :param feat_multiplier: (optional) multiply the number of feature by this nummber at each new level. Default is 1.
    :param activation: (optional) activation function. Can be 'elu', 'relu'.
    :param recompute: (optional) whether to recompute result files even if they already exists."""

    # create result folder
    if not os.path.exists(os.path.join(validation_main_dir)):
        os.mkdir(validation_main_dir)

    # loop over models
    list_models = utils.list_files(models_dir, expr=['dice', 'h5'], cond_type='and')[::step_eval]
    for model_idx, path_model in enumerate(list_models):

        # build names and create folders
        model_val_dir = os.path.join(validation_main_dir, os.path.basename(path_model).replace('.h5', ''))
        dice_path = os.path.join(model_val_dir, 'dice.npy')
        if not os.path.exists(os.path.join(model_val_dir)):
            os.mkdir(model_val_dir)

        if (not os.path.isfile(dice_path)) | recompute:
            predict(path_images=image_dir,
                    path_segmentations=model_val_dir,
                    path_model=path_model,
                    segmentation_label_list=path_label_list,
                    cropping=cropping,
                    conv_size=conv_size,
                    n_levels=n_levels,
                    nb_conv_per_level=nb_conv_per_level,
                    feat_multiplier=feat_multiplier,
                    activation=activation,
                    gt_folder=gt_dir)
Exemple #3
0
def validate_training(image_dir,
                      gt_dir,
                      models_dir,
                      validation_main_dir,
                      path_label_list,
                      step_eval=1,
                      recompute=True):
    """This function validates models saved at different epochs of the same training.
    All models are assumed to be in the same folder.contained in models_dir.
    The results of each model are saved in a subfolder in validation_main_dir.
    :param image_dir: path of the folder with validation images.
    :param gt_dir: path of the folder with ground truth label maps.
    These are matched to the validation images by sorting order.
    :param models_dir: path of the folder with the models to validate.
    :param validation_main_dir: path of the folder where all the models validation subfolders will be saved.
    :param path_label_list: path of the numpy array containing all the label values to validate on.
    :param step_eval: (optional) If step_eval > 1 skips models when validating, by validating on models step_eval apart.
    :param recompute: (optional) whether to recompute result files even if they already exists."""

    # create result folder
    if not os.path.exists(os.path.join(validation_main_dir)):
        os.mkdir(validation_main_dir)

    # loop over models
    list_models = utils.list_files(models_dir,
                                   expr=['dice', 'h5'],
                                   cond_type='and')[::step_eval]
    for model_idx, path_model in enumerate(list_models):

        # build names and create folders
        model_val_dir = os.path.join(
            validation_main_dir,
            os.path.basename(path_model).replace('.h5', ''))
        dice_path = os.path.join(model_val_dir, 'dice.npy')
        if not os.path.exists(os.path.join(model_val_dir)):
            os.mkdir(model_val_dir)

        if (not os.path.isfile(dice_path)) | recompute:
            predict(path_images=image_dir,
                    path_model=path_model,
                    path_segmentation_label_list=path_label_list,
                    path_segmentations=model_val_dir,
                    path_posteriors=None,
                    path_volumes=None,
                    gt_folder=gt_dir,
                    cropping=198)
Exemple #4
0
def validate_training(image_dir,
                      gt_dir,
                      models_dir,
                      validation_main_dir,
                      segmentation_label_list,
                      evaluation_label_list=None,
                      dist_map=False,
                      step_eval=1,
                      aff_ref='FS',
                      sigma_smoothing=0,
                      keep_biggest_component=False,
                      padding=None,
                      cropping=None,
                      conv_size=3,
                      n_levels=5,
                      nb_conv_per_level=2,
                      unet_feat_count=24,
                      feat_multiplier=2,
                      activation='elu',
                      compute_distances=False,
                      recompute=True):
    """This function validates models saved at different epochs of the same training.
    All models are assumed to be in the same folder.contained in models_dir.
    The results of each model are saved in a subfolder in validation_main_dir.
    :param image_dir: path of the folder with validation images.
    :param gt_dir: path of the folder with ground truth label maps.
    These are matched to the validation images by sorting order.
    :param models_dir: path of the folder with the models to validate.
    :param validation_main_dir: path of the folder where all the models validation subfolders will be saved.
    :param segmentation_label_list: path of the numpy array containing all the segmentation labels used during training.
    :param evaluation_label_list: (optional) label values to validate on. Must be a subset of the segmentation labels.
    Can be a sequence, a 1d numpy array, or the path to a numpy 1d array. Default is the same as segmentation_label_list
    :param dist_map: (optional) whether the input will contain distance maps channels (between each intenisty channels)
    Default is False.
    :param step_eval: (optional) If step_eval > 1 skips models when validating, by validating on models step_eval apart.
    :param aff_ref: (optional) affine matrix with which the models were trained. Can be 'FS' (default), or 'identity.
    :param sigma_smoothing: (optional) If not None, the posteriors are smoothed with a gaussian kernel of the specified
    standard deviation.
    :param keep_biggest_component: (optional) whether to only keep the biggest component in the predicted segmentation.
    :param padding: (optional) pad the images to the specified shape before predicting the segmentation maps.
    Can be an int, a sequence or a 1d numpy array.
    :param cropping: (optional) whether to crop the input to smaller size while being run through the network.
    The result is then given in the original image space. Can be an int, a sequence, or a 1d numpy array.
    :param n_levels: (optional) number of level for the Unet. Default is 5.
    :param nb_conv_per_level: (optional) number of convolutional layers per level. Default is 2.
    :param conv_size: (optional) size of the convolution kernels. Default is 2.
    :param unet_feat_count: (optional) number of feature maps for the first level. Default is 24.
    :param feat_multiplier: (optional) multiply the number of feature by this nummber at each new level. Default is 1.
    :param activation: (optional) activation function. Can be 'elu', 'relu'.
    :param compute_distances: (optional) whether to compute the Haussdorf and mean surface distance.
    :param recompute: (optional) whether to recompute result files even if they already exists."""

    # create result folder
    utils.mkdir(validation_main_dir)

    # loop over models
    list_models = utils.list_files(models_dir,
                                   expr=['dice', 'h5'],
                                   cond_type='and')[::step_eval]
    loop_info = utils.LoopInfo(len(list_models), 1, 'validating', True)
    for model_idx, path_model in enumerate(list_models):

        # build names and create folders
        model_val_dir = os.path.join(
            validation_main_dir,
            os.path.basename(path_model).replace('.h5', ''))
        dice_path = os.path.join(model_val_dir, 'dice.npy')
        utils.mkdir(model_val_dir)

        if (not os.path.isfile(dice_path)) | recompute:
            loop_info.update(model_idx)
            predict(path_images=image_dir,
                    path_model=path_model,
                    segmentation_label_list=segmentation_label_list,
                    dist_map=dist_map,
                    path_segmentations=model_val_dir,
                    padding=padding,
                    cropping=cropping,
                    aff_ref=aff_ref,
                    sigma_smoothing=sigma_smoothing,
                    keep_biggest_component=keep_biggest_component,
                    conv_size=conv_size,
                    n_levels=n_levels,
                    nb_conv_per_level=nb_conv_per_level,
                    unet_feat_count=unet_feat_count,
                    feat_multiplier=feat_multiplier,
                    activation=activation,
                    gt_folder=gt_dir,
                    evaluation_label_list=evaluation_label_list,
                    compute_distances=compute_distances,
                    recompute=recompute,
                    verbose=False)
Exemple #5
0
def validate_training(image_dir,
                      gt_dir,
                      models_dir,
                      validation_main_dir,
                      segmentation_labels,
                      n_neutral_labels=None,
                      evaluation_labels=None,
                      step_eval=1,
                      padding=None,
                      cropping=None,
                      target_res=1.,
                      gradients=False,
                      flip=False,
                      topology_classes=None,
                      sigma_smoothing=0,
                      keep_biggest_component=False,
                      conv_size=3,
                      n_levels=5,
                      nb_conv_per_level=2,
                      unet_feat_count=24,
                      feat_multiplier=2,
                      activation='elu',
                      mask_dir=None,
                      compute_distances=False,
                      recompute=True):
    """This function validates models saved at different epochs of the same training.
    All models are assumed to be in the same folder.contained in models_dir.
    The results of each model are saved in a subfolder in validation_main_dir.
    :param image_dir: path of the folder with validation images.
    :param gt_dir: path of the folder with ground truth label maps.
    These are matched to the validation images by sorting order.
    :param models_dir: path of the folder with the models to validate.
    :param validation_main_dir: path of the folder where all the models validation subfolders will be saved.
    :param segmentation_labels: path of the numpy array containing all the segmentation labels used during training.
    :param n_neutral_labels: (optional) value of n_neutral_labels used during training. Used only if flip is True.
    :param evaluation_labels: (optional) label values to validate on. Must be a subset of the segmentation labels.
    Can be a sequence, a 1d numpy array, or the path to a numpy 1d array. Default is the same as segmentation_label_list
    :param step_eval: (optional) If step_eval > 1 skips models when validating, by validating on models step_eval apart.
    :param padding: (optional) pad the images to the specified shape before predicting the segmentation maps.
    Can be an int, a sequence or a 1d numpy array.
    :param cropping: (optional) whether to crop the input to smaller size while being run through the network.
    The result is then given in the original image space. Can be an int, a sequence, or a 1d numpy array.
    :param target_res: (optional) target resolution at which the network operates (and thus resolution of the output
    segmentations). This must match the resolution of the training data ! target_res is used to automatically resampled
    the images with resolutions outside [target_res-0.05, target_res+0.05].
    Can be a sequence, a 1d numpy array. Set to None to disable the automatic resampling. Default is 1mm.
    :param flip: (optional) whether to perform test-time augmentation, where the input image is segmented along with
    a right/left flipped version on it. If set to True (default), be careful because this requires more memory.
    :param topology_classes: List of classes corresponding to all segmentation labels, in order to group them into
    classes, for each of which we will operate a smooth version of biggest connected component.
    Can be a sequence, a 1d numpy array, or the path to a numpy 1d array in the same order as segmentation_label_list.
    Default is None, where no topological analysis is performed.
    :param sigma_smoothing: (optional) If not None, the posteriors are smoothed with a gaussian kernel of the specified
    standard deviation.
    :param keep_biggest_component: (optional) whether to only keep the biggest component in the predicted segmentation.
    This is applied independently of topology_classes, and it is applied to the whole segmentation
    :param conv_size: (optional) size of the convolution kernels. Default is 2.
    :param n_levels: (optional) number of level for the Unet. Default is 5.
    :param nb_conv_per_level: (optional) number of convolutional layers per level. Default is 2.
    :param unet_feat_count: (optional) number of feature maps for the first level. Default is 24.
    :param feat_multiplier: (optional) multiply the number of feature by this nummber at each new level. Default is 1.
    :param activation: (optional) activation function. Can be 'elu', 'relu'.
    :param mask_dir: (optional) path of masks that will be used to mask out some parts of the obtained segmentations
    during the evaluation. Default is None, where nothing is masked.
    :param compute_distances: (optional) whether to add Hausdorff and mean surface distance evaluations to the default
    Dice evaluation. Default is True.
    :param recompute: (optional) whether to recompute result files even if they already exists."""

    # create result folder
    utils.mkdir(validation_main_dir)

    # loop over models
    list_models = utils.list_files(models_dir,
                                   expr=['dice', '.h5'],
                                   cond_type='and')[::step_eval]
    # list_models = [p for p in list_models if int(os.path.basename(p)[-6:-3]) % 10 == 0]
    loop_info = utils.LoopInfo(len(list_models), 1, 'validating', True)
    for model_idx, path_model in enumerate(list_models):

        # build names and create folders
        model_val_dir = os.path.join(
            validation_main_dir,
            os.path.basename(path_model).replace('.h5', ''))
        dice_path = os.path.join(model_val_dir, 'dice.npy')
        utils.mkdir(model_val_dir)

        if (not os.path.isfile(dice_path)) | recompute:
            loop_info.update(model_idx)
            predict(path_images=image_dir,
                    path_model=path_model,
                    segmentation_labels=segmentation_labels,
                    n_neutral_labels=n_neutral_labels,
                    path_segmentations=model_val_dir,
                    padding=padding,
                    cropping=cropping,
                    target_res=target_res,
                    gradients=gradients,
                    flip=flip,
                    topology_classes=topology_classes,
                    sigma_smoothing=sigma_smoothing,
                    keep_biggest_component=keep_biggest_component,
                    conv_size=conv_size,
                    n_levels=n_levels,
                    nb_conv_per_level=nb_conv_per_level,
                    unet_feat_count=unet_feat_count,
                    feat_multiplier=feat_multiplier,
                    activation=activation,
                    gt_folder=gt_dir,
                    mask_folder=mask_dir,
                    evaluation_labels=evaluation_labels,
                    compute_distances=compute_distances,
                    recompute=recompute,
                    verbose=False)