Exemple #1
0
def create_fake_quantize_node(graph: Graph, name):
    fq = FakeQuantize(graph, {
        'name': name,
        'levels': 0,
        'stop_value_propagation': True
    }).create_node()

    input_low = Const(graph, {
        'value': np.array(0.0).astype(np.float32)
    }).create_node()
    input_height = Const(graph, {
        'value': np.array(0.0).astype(np.float32)
    }).create_node()
    output_low = Const(graph, {
        'value': np.array(0.0).astype(np.float32)
    }).create_node()
    output_height = Const(graph, {
        'value': np.array(0.0).astype(np.float32)
    }).create_node()

    input_low.out_port(0).connect(fq.in_port(1))
    input_height.out_port(0).connect(fq.in_port(2))
    output_low.out_port(0).connect(fq.in_port(3))
    output_height.out_port(0).connect(fq.in_port(4))

    input_low.infer(input_low)
    input_height.infer(input_height)
    output_low.infer(output_low)
    output_height.infer(output_height)

    return fq
    def replace_sub_graph(self, graph: Graph, match: [dict, SubgraphMatch]):

        q = match['quantize']
        dq = match['dequantize']

        q_scale = q.in_port(1).get_source().node
        q_zerop = q.in_port(2).get_source().node
        dq_scale = dq.in_port(1).get_source().node
        dq_zerop = dq.in_port(2).get_source().node

        inp_port = q.in_port(0).get_source()
        name = inp_port.node.soft_get('name', inp_port.node.id)

        # only constant as for zero_point/scale supported
        if q_scale.soft_get('type') == 'Const' and dq_scale.soft_get('type') == 'Const' and \
                q_zerop.soft_get('type') == 'Const' and dq_zerop.soft_get('type') == 'Const':

            # only patterns with same scale/zero_point values for Q and DQ are supported
            if q_scale.value == dq_scale.value and q_zerop.value == dq_zerop.value:
                log.debug('Found Q-DQ pattern after {}'.format(name))

                zero_point_type = q_zerop.value.dtype
                # data type affects range of output values: [-128..127] or [0..255]
                if zero_point_type == np.int8:
                    output_min_value = -128.0
                    output_max_value = 127.0
                elif zero_point_type == np.uint8:
                    output_min_value = 0.0
                    output_max_value = 255.0
                else:
                    raise Error('Not supported type {} for zero point value in node {}'.format(
                        zero_point_type, q_zerop.soft_get('name')))
                min_value = q_scale.value * (output_min_value - q_zerop.value)
                max_value = q_scale.value * (output_max_value - q_zerop.value)
                input_min = Const(graph, {'value': np.array(min_value)}).create_node()
                input_max = Const(graph, {'value': np.array(max_value)}).create_node()

                FQ = FakeQuantize(graph, {
                    'levels': 256,
                    'name': match['quantize'].name + '_Dequantize/FakeQuantize'
                }).create_node()

                FQ.in_port(0).connect(match['quantize'].in_port(0).get_source())
                FQ.in_port(1).connect(input_min.out_port(0))
                FQ.in_port(2).connect(input_max.out_port(0))
                FQ.in_port(3).connect(input_min.out_port(0))
                FQ.in_port(4).connect(input_max.out_port(0))

                match['dequantize'].out_port(0).get_connection().set_source(FQ.out_port(0))
                dq_name = match['dequantize'].soft_get('name', match['dequantize'].id)
                rename_nodes([(match['dequantize'], dq_name + '/to_be_removed'), (FQ, dq_name)])
            else:
                raise Error('QuantizeLinear and DequantizeLinear (after {}) have different scale or zero-point values, '
                            'cannot fuse into FakeQuantize!'.format(name))