Exemple #1
0
    def extract(node):
        proto_layer = node.pb
        param = proto_layer.resample_param
        types = [
            "",
            'nearest',
            'linear',
            'cubic',
            'area',
        ]
        resample_type = types[param.type]

        update_attrs = {
            'antialias': int(param.antialias),
            'height': param.height,
            'width': param.width,
            'type': resample_type,
            'factor': param.factor,
            'fw': 'caffe',
        }

        mapping_rule = merge_attrs(param, update_attrs)
        mapping_rule['mode'] = mapping_rule['type']
        mapping_rule['axes'] = int64_array([2, 3])
        mapping_rule.pop('type')
        Interpolate.update_node_stat(node, mapping_rule)
        return __class__.enabled
Exemple #2
0
 def extract(cls, node):
     mapping_rule = {
         'align_corners': int(node.pb.attr['align_corners'].b),
         'mode': 'linear',
         'axes': int64_array([1, 2]),
     }
     Interpolate.update_node_stat(node, mapping_rule)
     return cls.enabled
 def extract(node):
     mapping_rule = {
         'mode': 'nearest',
         'antialias': 0,
         'axes': int64_array([1, 2]),
     }
     Interpolate.update_node_stat(node, mapping_rule)
     return __class__.enabled
Exemple #4
0
 def extract(node):
     mapping_rule = {
         'pads_begin': 0,
         'pads_end': 0,
         'align_corners': int(node.pb.attr['align_corners'].b),
         'mode': 'linear',
         'axes': int64_array([1, 2]),
     }
     Interpolate.update_node_stat(node, mapping_rule)
     return __class__.enabled
Exemple #5
0
    def extract(cls, node):
        attrs = get_mxnet_layer_attrs(node.symbol_dict)
        scale = attrs.int("scale", 1)
        num_filter = attrs.int("num_filter", 0)
        mode = attrs.str("sample_type", None)
        if mode == 'nearest':
            node_attrs = {
                'factor': attrs.int("scale", 1),
                'mode': mode,
                'antialias': 0,
                'axes': int64_array([2, 3]),
            }
            Interpolate.update_node_stat(node, node_attrs)
        elif mode == 'bilinear':
            """
            Bilinear UpSampling uses deconvolution algorithm under the hood.
            For MXNet Bilinear UpSampling op just wrapper over Deconvolution op.
            Inputs data:
                input1 - input data
                input2 - deconvolution weight
            """
            kernel = 2 * scale - scale % 2
            stride = scale
            pad = math.ceil((scale - 1) / 2)
            num_group = num_filter

            node_attrs = {
                'op': __class__.op,
                'type': 'Deconvolution',
                'bias_addable': True,
                'bias_term': False,
                'pad': int64_array([[0, 0], [0, 0], [pad, pad], [pad, pad]]),
                'pad_spatial_shape': int64_array([[pad, pad], [pad, pad]]),
                'dilation': None,
                'output_spatial_shape': None,
                'output_shape': None,
                'stride': int64_array([1, 1, stride, stride]),
                'group': num_group,
                'output': num_filter,
                'kernel_spatial': int64_array([kernel, kernel]),
                'input_feature_channel': 0,
                'output_feature_channel': 1,
                'kernel_spatial_idx': None,
                'reshape_kernel': True,
                'spatial_dims': None,
                'channel_dims': int64_array([1]),
                'batch_dims': int64_array([0]),
                'layout': 'NCHW',
                'get_pad': DeconvFrontExtractor.get_pad,
            }
            Convolution.update_node_stat(node, node_attrs)
        return cls.enabled
    def extract(node):
        proto_layer = node.pb
        param = proto_layer.interp_param

        update_attrs = {
            'height': param.height,
            'width': param.width,
            'zoom_factor': param.zoom_factor,
            'shrink_factor': param.shrink_factor,
        }

        mapping_rule = merge_attrs(param, update_attrs)
        mapping_rule.update({'fw': 'caffe', 'mode': 'linear', 'axes': int64_array([2, 3]),
                             'pads_begin': param.pad_beg, 'pads_end': param.pad_end, 'align_corners': 1})
        Interpolate.update_node_stat(node, mapping_rule)
        return __class__.enabled