def test_region_infer_do_softmax(self): graph = build_graph( nodes_attributes, [('node_1', 'region'), ('region', 'node_3'), ('node_3', 'op_output')], { 'node_3': { 'shape': None }, 'node_1': { 'shape': np.array([1, 227, 227, 3]) }, 'region': { 'do_softmax': 0, 'end_axis': -1, 'axis': 1, 'classes': 80, 'coords': 4, 'mask': np.array([6, 7, 8]), **layout_attrs() } }) graph.graph['layout'] = 'NHWC' reorg_node = Node(graph, 'region') RegionYoloOp.regionyolo_infer(reorg_node) exp_shape = np.array([1, 227, 227, (80 + 4 + 1) * 3]) res_shape = graph.node['node_3']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i])
def extract(cls, node): proto_layer = node.pb param = proto_layer.region_yolo_param flatten_param = proto_layer.flatten_param axis = flatten_param.axis end_axis = flatten_param.end_axis coords = param.coords classes = param.classes num = param.num update_attrs = { 'coords': coords, 'classes': classes, 'num': num, 'do_softmax': int(param.do_softmax), 'anchors': np.array(param.anchors), 'mask': np.array(param.mask) } flatten_attrs = {'axis': axis, 'end_axis': end_axis} mapping_rule = merge_attrs(param, update_attrs) mapping_rule.update(flatten_attrs) mapping_rule.update(layout_attrs()) # update the attributes of the node RegionYoloOp.update_node_stat(node, mapping_rule) return cls.enabled
def test_region_infer_dynamic_flatten(self): graph = build_graph( nodes_attributes, [('node_1', 'region'), ('region', 'node_3'), ('node_3', 'op_output')], { 'node_3': { 'shape': None, 'value': None }, 'node_1': { 'shape': shape_array( [1, dynamic_dimension_value, 227, 227]) }, 'region': { 'end_axis': 1, 'axis': 0, 'do_softmax': 1, **layout_attrs() } }) graph.graph['layout'] = 'NCHW' reorg_node = Node(graph, 'region') RegionYoloOp.regionyolo_infer(reorg_node) exp_shape = shape_array([dynamic_dimension_value, 227, 227]) res_shape = graph.node['node_3']['shape'] self.assertTrue(strict_compare_tensors(exp_shape, res_shape))
def test_region_infer_flatten(self): graph = build_graph( nodes_attributes, [('node_1', 'region'), ('region', 'node_3'), ('node_3', 'op_output')], { 'node_3': { 'shape': None, 'value': None }, 'node_1': { 'shape': np.array([1, 3, 227, 227]) }, 'region': { 'end_axis': 1, 'axis': 0, 'do_softmax': 1, **layout_attrs() } }) graph.graph['layout'] = 'NCHW' reorg_node = Node(graph, 'region') RegionYoloOp.regionyolo_infer(reorg_node) exp_shape = np.array([1 * 3, 227, 227]) res_shape = graph.node['node_3']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i])
def transform_graph(self, graph: Graph, replacement_descriptions): op_outputs = [n for n, d in graph.nodes(data=True) if 'op' in d and d['op'] == 'Result'] for op_output in op_outputs: last_node = Node(graph, op_output).in_node(0) op_params = dict(name=last_node.id + '/YoloRegion', axis=1, end_axis=-1) op_params.update(replacement_descriptions) region_layer = RegionYoloOp(graph, op_params) region_layer_node = region_layer.create_node([last_node]) # here we remove 'axis' from 'dim_attrs' to avoid permutation from axis = 1 to axis = 2 region_layer_node.dim_attrs.remove('axis') Result(graph).create_node([region_layer_node]) graph.remove_node(op_output)
def transform_graph(self, graph: Graph, replacement_descriptions): graph.remove_nodes_from(graph.get_nodes_with_attributes(op='Result')) for i, input_node_name in enumerate( replacement_descriptions['entry_points']): if input_node_name not in graph.nodes(): raise Error( 'TensorFlow YOLO V3 conversion mechanism was enabled. ' 'Entry points "{}" were provided in the configuration file. ' 'Entry points are nodes that feed YOLO Region layers. ' 'Node with name {} doesn\'t exist in the graph. ' 'Refer to documentation about converting YOLO models for more information.' .format( ', '.join(replacement_descriptions['entry_points']), input_node_name)) last_node = Node(graph, input_node_name).in_node(0) op_params = dict(name=last_node.id + '/YoloRegion', axis=1, end_axis=-1, do_softmax=0) op_params.update(replacement_descriptions) if 'masks' in op_params: op_params['mask'] = op_params['masks'][i] del op_params['masks'] region_layer_node = RegionYoloOp(graph, op_params).create_node( [last_node]) # TODO: do we need change axis for further permutation region_layer_node.dim_attrs.remove('axis') Result(graph, { 'name': region_layer_node.id + '/Result' }).create_node([region_layer_node])