Exemple #1
0
 def __init__(self, threshold=0.65):
     self.THRES = threshold
     '''create tracker'''
     # create base tracker
     model = ModelBuilder(
     )  # a model is a Neural Network.(a torch.nn.Module)
     model = load_pretrain(model, snapshot_path).cuda().eval()
     self.base_tracker = build_tracker(
         model
     )  # a tracker is a object consisting of not only a NN and some post-processing
Exemple #2
0
    def __init__(self, rf_model_code, enable_rf=True):
        model_name = 'siamrpn_' + RF_type.format(rf_model_code)
        if not enable_rf:
            model_name = model_name.replace(RF_type.format(rf_model_code), '')
        super(SiamRPNpp_RF, self).__init__(name=model_name)
        self.enable_rf = enable_rf
        # create tracker
        snapshot_path = os.path.join(project_path_,
                                     'experiments/%s/model.pth' % siam_model_)
        config_path = os.path.join(project_path_,
                                   'experiments/%s/config.yaml' % siam_model_)
        cfg.merge_from_file(config_path)
        model = ModelBuilder()  # a sub-class of `torch.nn.Module`
        model = load_pretrain(model, snapshot_path).cuda().eval()
        self.tracker = build_tracker(
            model
        )  # tracker is a object consisting of NN and some post-processing

        # create refinement module
        if self.enable_rf:
            self.RF_module = RefineModule(refine_path.format(rf_model_code),
                                          selector_path,
                                          search_factor=sr,
                                          input_sz=input_sz)
Exemple #3
0
def main():
    RF_module = RefineModule(refine_path,
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)

    # refine_method = args.refine_method
    model_name = 'siamrpn_' + RF_type + '_m2b_{}'.format(args.thres)

    snapshot_path = os.path.join(
        project_path_, 'experiments/%s/model.pth' % args.tracker_name)
    config_path = os.path.join(
        project_path_, 'experiments/%s/config.yaml' % args.tracker_name)

    cfg.merge_from_file(config_path)

    # create model
    model = ModelBuilder()  # a sub-class of `torch.nn.Module`
    model = load_pretrain(model, snapshot_path).cuda().eval()

    # build tracker
    tracker = build_tracker(
        model)  # tracker is a object consisting of NN and some post-processing

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root_,
                                            load_img=False)

    # OPE tracking
    for v_idx, video in enumerate(dataset):
        if os.path.exists(
                os.path.join(save_dir, args.dataset, model_name,
                             '{}.txt'.format(video.name))):
            continue
        if args.video != '':
            # test one special video
            if video.name != args.video:
                continue
        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        for idx, (img, gt_bbox) in enumerate(video):
            tic = cv2.getTickCount()
            if idx == 0:
                H, W, _ = img.shape
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                tracker.init(img, gt_bbox_)
                '''##### initilize refinement module for specific video'''
                RF_module.initialize(cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                                     np.array(gt_bbox_))
                pred_bbox = gt_bbox_
                scores.append(None)
                pred_bboxes.append(pred_bbox)

            else:
                outputs = tracker.track(img)
                pred_bbox = outputs['bbox']
                '''##### refine tracking results #####'''
                mask_pred = RF_module.get_mask(
                    cv2.cvtColor(img, cv2.COLOR_BGR2RGB), np.array(pred_bbox))
                pred_bbox = mask2bbox(mask_pred,
                                      pred_bbox,
                                      MASK_THRESHOLD=args.thres)
                x1, y1, w, h = pred_bbox.tolist()
                '''add boundary and min size limit'''
                x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                w = x2 - x1
                h = y2 - y1

                pred_bbox = np.array([x1, y1, w, h])
                tracker.center_pos = np.array([x1 + w / 2, y1 + h / 2])
                tracker.size = np.array([w, h])

                pred_bboxes.append(pred_bbox)
                scores.append(outputs['best_score'])
            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())
            if idx == 0:
                cv2.destroyAllWindows()
            if args.vis and idx > 0:
                gt_bbox = list(map(int, gt_bbox))
                pred_bbox = list(map(int, pred_bbox))
                cv2.rectangle(
                    img, (gt_bbox[0], gt_bbox[1]),
                    (gt_bbox[0] + gt_bbox[2], gt_bbox[1] + gt_bbox[3]),
                    (0, 255, 0), 3)
                cv2.rectangle(
                    img, (pred_bbox[0], pred_bbox[1]),
                    (pred_bbox[0] + pred_bbox[2], pred_bbox[1] + pred_bbox[3]),
                    (0, 255, 255), 3)
                cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX,
                            1, (0, 255, 255), 2)
                cv2.imshow(video.name, img)
                cv2.waitKey(1)
        toc /= cv2.getTickFrequency()

        # save results
        model_path = os.path.join(save_dir, args.dataset,
                                  model_name + '_' + str(selector_path))
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        result_path = os.path.join(model_path, '{}.txt'.format(video.name))
        with open(result_path, 'w') as f:
            for x in pred_bboxes:
                f.write(','.join([str(i) for i in x]) + '\n')
        print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            v_idx + 1, video.name, toc, idx / toc))
Exemple #4
0
def main(model_code):
    RF_module = RefineModule(refine_path.format(model_code),
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)
    model_name = 'siamrpn_' + '{}-{}'.format(
        RF_type.format(model_code), selector_path) + '_%d' % (args.run_id)

    snapshot_path = os.path.join(
        project_path_, 'experiments/%s/model.pth' % args.tracker_name)
    config_path = os.path.join(
        project_path_, 'experiments/%s/config.yaml' % args.tracker_name)

    cfg.merge_from_file(config_path)

    # create model
    model = ModelBuilder()  # a sub-class of `torch.nn.Module`
    model = load_pretrain(model, snapshot_path).cuda().eval()

    # build tracker
    tracker = build_tracker(
        model)  # tracker is a object consisting of NN and some post-processing

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root_,
                                            load_img=False)

    if args.dataset in ['VOT2016', 'VOT2018', 'VOT2019']:
        # restart tracking
        for v_idx, video in enumerate(dataset):
            if args.video != '':
                # test one special video
                if video.name != args.video:
                    continue
            frame_counter = 0
            lost_number = 0
            toc = 0
            pred_bboxes = []
            for idx, (img, gt_bbox) in enumerate(video):
                if len(gt_bbox) == 4:
                    gt_bbox = [
                        gt_bbox[0], gt_bbox[1], gt_bbox[0],
                        gt_bbox[1] + gt_bbox[3] - 1,
                        gt_bbox[0] + gt_bbox[2] - 1,
                        gt_bbox[1] + gt_bbox[3] - 1,
                        gt_bbox[0] + gt_bbox[2] - 1, gt_bbox[1]
                    ]
                tic = cv2.getTickCount()
                if idx == frame_counter:
                    H, W, _ = img.shape
                    cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                    gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                    tracker.init(img, gt_bbox_)
                    '''##### initilize refinement module for specific video'''
                    RF_module.initialize(cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                                         np.array(gt_bbox_))
                    pred_bbox = gt_bbox_
                    pred_bboxes.append(1)

                elif idx > frame_counter:
                    outputs = tracker.track(img)
                    pred_bbox = outputs['bbox']
                    '''##### refine tracking results #####'''
                    pred_bbox = RF_module.refine(
                        cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                        np.array(pred_bbox))
                    x1, y1, w, h = pred_bbox.tolist()
                    '''add boundary and min size limit'''
                    x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                    w = x2 - x1
                    h = y2 - y1
                    pred_bbox = np.array([x1, y1, w, h])
                    tracker.center_pos = np.array([x1 + w / 2, y1 + h / 2])
                    tracker.size = np.array([w, h])

                    overlap = vot_overlap(pred_bbox, gt_bbox,
                                          (img.shape[1], img.shape[0]))

                    if overlap > 0:
                        # not lost
                        pred_bboxes.append(pred_bbox)
                    else:
                        # lost object
                        pred_bboxes.append(2)
                        frame_counter = idx + 5  # skip 5 frames
                        lost_number += 1
                else:
                    pred_bboxes.append(0)
                toc += cv2.getTickCount() - tic
                if idx == 0:
                    cv2.destroyAllWindows()
                if args.vis and idx > frame_counter:
                    cv2.polylines(
                        img, [np.array(gt_bbox, np.int).reshape(
                            (-1, 1, 2))], True, (0, 255, 0), 3)

                    bbox = list(map(int, pred_bbox))
                    cv2.rectangle(img, (bbox[0], bbox[1]),
                                  (bbox[0] + bbox[2], bbox[1] + bbox[3]),
                                  (0, 255, 255), 3)
                    cv2.putText(img, str(idx), (40, 40),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                    cv2.putText(img, str(lost_number), (40, 80),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
                    cv2.imshow(video.name, img)
                    cv2.waitKey(1)
            toc /= cv2.getTickFrequency()
            # save results
            video_path = os.path.join(save_dir, args.dataset, model_name,
                                      'baseline', video.name)
            if not os.path.isdir(video_path):
                os.makedirs(video_path)
            result_path = os.path.join(video_path,
                                       '{}_001.txt'.format(video.name))
            with open(result_path, 'w') as f:
                for x in pred_bboxes:
                    if isinstance(x, int):
                        f.write("{:d}\n".format(x))
                    else:
                        f.write(','.join([vot_float2str("%.4f", i)
                                          for i in x]) + '\n')
            print(
                '({:3d}) Video: {:12s} Time: {:4.1f}s Speed: {:3.1f}fps Lost: {:d}'
                .format(v_idx + 1, video.name, toc, idx / toc, lost_number))
Exemple #5
0
def main():
    model_name = 'siamRPN'

    snapshot_path = os.path.join(
        project_path_, 'experiments/%s/model.pth' % args.tracker_name)
    config_path = os.path.join(
        project_path_, 'experiments/%s/config.yaml' % args.tracker_name)
    cfg.merge_from_file(config_path)

    # create model
    model = ModelBuilder()  # a model is a Neural Network.(a torch.nn.Module)

    # load model
    model = load_pretrain(model, snapshot_path).cuda().eval()

    # build tracker
    tracker = build_tracker(
        model
    )  # a tracker is a object consisting of not only a NN and some post-processing

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset,
                                            dataset_root=dataset_root_,
                                            load_img=False)

    # OPE tracking
    for v_idx, video in enumerate(dataset):
        if os.path.exists(
                os.path.join(save_dir, args.dataset, model_name,
                             '{}.txt'.format(video.name))):
            continue
        if args.video != '':
            # test one special video
            if video.name != args.video:
                continue
        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        for idx, (img, gt_bbox) in enumerate(video):
            tic = cv2.getTickCount()
            if idx == 0:
                H, W, _ = img.shape
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                tracker.init(img, gt_bbox_)
                pred_bboxes.append(gt_bbox_)

            else:
                outputs = tracker.track(img)
                pred_bbox = outputs['bbox']
                x1, y1, w, h = pred_bbox
                '''add boundary and min size limit'''
                x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                w = x2 - x1
                h = y2 - y1
                pred_bbox = np.array([x1, y1, w, h])
                tracker.center_pos = np.array([x1 + w / 2, y1 + h / 2])
                tracker.size = np.array([w, h])

                pred_bboxes.append(pred_bbox)
                scores.append(outputs['best_score'])

            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())
            if idx == 0:
                cv2.destroyAllWindows()
            if args.vis and idx > 0:
                gt_bbox = list(map(int, gt_bbox))
                pred_bbox = list(map(int, pred_bbox))
                cv2.rectangle(
                    img, (gt_bbox[0], gt_bbox[1]),
                    (gt_bbox[0] + gt_bbox[2], gt_bbox[1] + gt_bbox[3]),
                    (0, 255, 0), 3)
                cv2.rectangle(
                    img, (pred_bbox[0], pred_bbox[1]),
                    (pred_bbox[0] + pred_bbox[2], pred_bbox[1] + pred_bbox[3]),
                    (0, 255, 255), 3)
                cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX,
                            1, (0, 255, 255), 2)
                cv2.imshow(video.name, img)
                cv2.waitKey(1)
        toc /= cv2.getTickFrequency()

        # save results
        model_path = os.path.join(save_dir, args.dataset, model_name)
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        result_path = os.path.join(model_path, '{}.txt'.format(video.name))
        with open(result_path, 'w') as f:
            for x in pred_bboxes:
                f.write(','.join([str(i) for i in x]) + '\n')
        print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            v_idx + 1, video.name, toc, idx / toc))
Exemple #6
0
def main():
    RF_module = RefineModule(refine_path,
                             selector_path,
                             search_factor=sr,
                             input_sz=input_sz)
    model_name = 'siamrpn_' + RF_type
    print(model_name)

    dataset_root = dataset_root_

    snapshot_path = os.path.join(
        project_path_, 'experiments/%s/model.pth' % args.tracker_name)
    config_path = os.path.join(
        project_path_, 'experiments/%s/config.yaml' % args.tracker_name)

    cfg.merge_from_file(config_path)

    # create model
    model = ModelBuilder()  # a model is a Neural Network (`torch.nn.Module`)
    model = load_pretrain(model, snapshot_path).cuda().eval()

    # build tracker
    tracker = build_tracker(
        model
    )  # tracker is a object consisting of a NN and some post-processing

    # create dataset
    frames_dir = os.path.join(dataset_root, 'frames')
    seq_list = sorted(os.listdir(frames_dir))

    # OPE tracking
    for v_idx, seq_name in enumerate(seq_list):
        if args.video != '':
            # test one special video
            if seq_name != args.video:
                continue
        toc = 0
        pred_bboxes = []
        scores = []
        track_times = []
        seq_frame_dir = os.path.join(frames_dir, seq_name)
        num_frames = len(os.listdir(seq_frame_dir))
        gt_file = os.path.join(dataset_root, 'anno', '%s.txt' % seq_name)
        gt_bbox = np.loadtxt(gt_file, dtype=np.float32,
                             delimiter=',').squeeze()
        for idx in range(num_frames):
            frame_path = os.path.join(seq_frame_dir, '%d.jpg' % idx)
            img = cv2.imread(frame_path)
            tic = cv2.getTickCount()
            if idx == 0:
                cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                gt_bbox_ = [cx - (w - 1) / 2, cy - (h - 1) / 2, w, h]
                H, W, _ = img.shape
                '''Initialize'''
                tracker.init(img, gt_bbox_)
                '''##### initilize refinement module for specific video'''
                RF_module.initialize(cv2.cvtColor(img, cv2.COLOR_BGR2RGB),
                                     np.array(gt_bbox_))
                pred_bbox = gt_bbox_
                scores.append(None)
                pred_bboxes.append(pred_bbox)

            else:
                '''Track'''
                outputs = tracker.track(img)
                pred_bbox = outputs['bbox']
                '''##### refine tracking results #####'''
                pred_bbox = RF_module.refine(
                    cv2.cvtColor(img, cv2.COLOR_BGR2RGB), np.array(pred_bbox))
                x1, y1, w, h = pred_bbox.tolist()
                '''add boundary and min size limit'''
                x1, y1, x2, y2 = bbox_clip(x1, y1, x1 + w, y1 + h, (H, W))
                w = x2 - x1
                h = y2 - y1
                pred_bbox = np.array([x1, y1, w, h])
                tracker.center_pos = np.array([x1 + w / 2, y1 + h / 2])
                tracker.size = np.array([w, h])
                pred_bboxes.append(pred_bbox)

            toc += cv2.getTickCount() - tic
            track_times.append(
                (cv2.getTickCount() - tic) / cv2.getTickFrequency())
            if idx == 0:
                cv2.destroyAllWindows()
            if args.vis and idx > 0:
                pred_bbox = list(map(int, pred_bbox))
                cv2.rectangle(
                    img, (pred_bbox[0], pred_bbox[1]),
                    (pred_bbox[0] + pred_bbox[2], pred_bbox[1] + pred_bbox[3]),
                    (0, 255, 255), 3)
                cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX,
                            1, (0, 255, 255), 2)
                cv2.imshow(seq_name, img)
                cv2.waitKey(1)

        toc /= cv2.getTickFrequency()
        # save results
        model_path = os.path.join(save_dir, 'trackingnet', model_name)
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        result_path = os.path.join(model_path, '{}.txt'.format(seq_name))
        with open(result_path, 'w') as f:
            for x in pred_bboxes:
                f.write(','.join([str(i) for i in x]) + '\n')
        print('({:3d}) Video: {:12s} Time: {:5.1f}s Speed: {:3.1f}fps'.format(
            v_idx + 1, seq_name, toc, idx / toc))
Exemple #7
0
def main():
    model_name = 'siamRPN'

    snapshot_path = os.path.join(project_path_, 'experiments/%s/model.pth' % args.tracker_name)
    config_path = os.path.join(project_path_, 'experiments/%s/config.yaml' % args.tracker_name)
    cfg.merge_from_file(config_path)

    # create model
    model = ModelBuilder()  # a model is a Neural Network.(a torch.nn.Module)

    # load model
    model = load_pretrain(model, snapshot_path).cuda().eval()

    # build tracker
    tracker = build_tracker(model)  # a tracker is a object consisting of not only a NN and some post-processing

    # create dataset
    dataset = DatasetFactory.create_dataset(name=args.dataset, dataset_root=dataset_root_, load_img=False)

    total_lost = 0
    if args.dataset in ['VOT2016', 'VOT2018', 'VOT2019']:
        # restart tracking
        for v_idx, video in enumerate(dataset):
            if args.video != '':
                # test one special video
                if video.name != args.video:
                    continue
            frame_counter = 0
            lost_number = 0
            toc = 0
            pred_bboxes = []
            for idx, (img, gt_bbox) in enumerate(video):
                if len(gt_bbox) == 4:
                    gt_bbox = [gt_bbox[0], gt_bbox[1],
                       gt_bbox[0], gt_bbox[1]+gt_bbox[3]-1,
                       gt_bbox[0]+gt_bbox[2]-1, gt_bbox[1]+gt_bbox[3]-1,
                       gt_bbox[0]+gt_bbox[2]-1, gt_bbox[1]]
                tic = cv2.getTickCount()
                if idx == frame_counter:
                    H,W,_ = img.shape
                    cx, cy, w, h = get_axis_aligned_bbox(np.array(gt_bbox))
                    gt_bbox_ = [cx-(w-1)/2, cy-(h-1)/2, w, h]
                    tracker.init(img, gt_bbox_)

                    pred_bbox = gt_bbox_
                    pred_bboxes.append(1)
                elif idx > frame_counter:
                    outputs = tracker.track(img)
                    pred_bbox = outputs['bbox']
                    overlap = vot_overlap(pred_bbox, gt_bbox, (img.shape[1], img.shape[0]))
                    if overlap > 0:
                        # not lost
                        pred_bboxes.append(pred_bbox)
                    else:
                        # lost object
                        pred_bboxes.append(2)
                        frame_counter = idx + 5 # skip 5 frames
                        lost_number += 1
                else:
                    pred_bboxes.append(0)
                toc += cv2.getTickCount() - tic
                if idx == 0:
                    cv2.destroyAllWindows()
                if args.vis and idx > frame_counter:
                    cv2.polylines(img, [np.array(gt_bbox, np.int).reshape((-1, 1, 2))],
                            True, (0, 255, 0), 3)
                    bbox = list(map(int, pred_bbox))
                    cv2.rectangle(img, (bbox[0], bbox[1]),
                                  (bbox[0]+bbox[2], bbox[1]+bbox[3]), (0, 255, 255), 3)
                    cv2.putText(img, str(idx), (40, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)
                    cv2.putText(img, str(lost_number), (40, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
                    cv2.imshow(video.name, img)
                    cv2.waitKey(1)
            toc /= cv2.getTickFrequency()
            # save results
            video_path = os.path.join(save_dir, args.dataset, model_name,
                    'baseline', video.name)
            if not os.path.isdir(video_path):
                os.makedirs(video_path)
            result_path = os.path.join(video_path, '{}_001.txt'.format(video.name))
            with open(result_path, 'w') as f:
                for x in pred_bboxes:
                    if isinstance(x, int):
                        f.write("{:d}\n".format(x))
                    else:
                        f.write(','.join([vot_float2str("%.4f", i) for i in x])+'\n')
            print('({:3d}) Video: {:12s} Time: {:4.1f}s Speed: {:3.1f}fps Lost: {:d}'.format(
                    v_idx+1, video.name, toc, idx / toc, lost_number))