Exemple #1
0
    def prepare_datatraining(self):
        """
        Step to build the training and testing set
        """
        self.array_features_totrain, self.array_labels_totrain , self.df_totrain = ext.prepare_data(self.df_decks_totrain, self.features)

        self.next(self.prepare_mlmagic)
Exemple #2
0
 def prepare_datascoring(self):
     """
     Step to build the scoring set
     """
     self.array_features_toscore, self.array_labels_toscore, self.df_toscore = ext.prepare_data(self.df_decks_toscore, self.features)
     
     self.next(self.prepare_mlmagic)
Exemple #3
0
for idx, features in enumerate(features_cardid[:-1]):
    features_cardid.append(features)
    informations_topcards[archetypes[idx]] = features

features = list(itertools.chain.from_iterable(features_cardid))
features = list(dict.fromkeys(features))

dict_df_decks_dataset = {
    "train" : df_decks_totrain,
    "test" : df_decks_totest,
    "score" : df_decks_toscore,
}

dict_df_decks_dataset_rtu = {}
for dataset in dict_df_decks_dataset:
    array_features, array_labels, df = ext.prepare_data(dict_df_decks_dataset[dataset], features)

    dict_df_decks_dataset_rtu[dataset] = {
        "array_features" : array_features,
        "array_labels" : array_labels,
        "df" : df
    }

parameters_model = random.choices(combinations_parameters_randomforest, k = 5)

"""
trigger_build_model + build_model steps
"""
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score