Exemple #1
0
    def test_modeling_4p(self):
        exponents = [(0, 1, 1), (0, 1, 2), (1, 4, 0), (1, 3, 0), (1, 4, 1),
                     (1, 3, 1), (1, 4, 2), (1, 3, 2), (1, 2, 0), (1, 2, 1),
                     (1, 2, 2), (2, 3, 0), (3, 4, 0), (2, 3, 1), (3, 4, 1),
                     (4, 5, 0), (2, 3, 2), (3, 4, 2), (1, 1, 0), (1, 1, 1),
                     (1, 1, 2), (5, 4, 0), (5, 4, 1), (4, 3, 0), (4, 3, 1),
                     (3, 2, 0), (3, 2, 1), (3, 2, 2), (5, 3, 0), (7, 4, 0),
                     (2, 1, 0), (2, 1, 1), (2, 1, 2), (9, 4, 0), (7, 3, 0),
                     (5, 2, 0), (5, 2, 1), (5, 2, 2), (8, 3, 0), (11, 4, 0),
                     (3, 1, 0), (3, 1, 1)]
        points = np.array(
            list(zip(*itertools.product([2, 4, 8, 10, 12], repeat=4))))
        for expo1, expo2, expo3, expo4 in zip(exponents, exponents[1:],
                                              exponents[2:], exponents[3:]):
            termX = CompoundTerm.create(*expo1)
            termY = CompoundTerm.create(*expo2)
            termZ = CompoundTerm.create(*expo3)
            termW = CompoundTerm.create(*expo4)
            term = MultiParameterTerm((0, termX), (1, termY), (2, termZ),
                                      (3, termW))
            term.coefficient = 10
            function = MultiParameterFunction(term)
            function.constant_coefficient = 20000

            values = function.evaluate(points)
            measurements = [
                Measurement(Coordinate(p), None, None, v)
                for p, v in zip(zip(*points), values)
            ]
            modeler = MultiParameterModeler()

            models = modeler.model([measurements])
            self.assertEqual(1, len(models))
            self.assertApproxFunction(function, models[0].hypothesis.function)
Exemple #2
0
    def test_modeling_plus(self):
        exponents = [(0, 1, 1), (0, 1, 2), (1, 4, 0), (1, 3, 0), (1, 4, 1), (1, 3, 1), (1, 4, 2), (1, 3, 2),
                     (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 3, 0), (3, 4, 0), (2, 3, 1), (3, 4, 1), (4, 5, 0),
                     (2, 3, 2), (3, 4, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (5, 4, 0), (5, 4, 1), (4, 3, 0),
                     (4, 3, 1), (3, 2, 0), (3, 2, 1), (3, 2, 2), (5, 3, 0), (7, 4, 0), (2, 1, 0), (2, 1, 1),
                     (2, 1, 2), (9, 4, 0), (7, 3, 0), (5, 2, 0), (5, 2, 1), (5, 2, 2), (8, 3, 0), (11, 4, 0),
                     (3, 1, 0), (3, 1, 1)]
        for expo1, expo2 in zip(exponents, exponents[1:]):
            termX = CompoundTerm.create(*expo1)
            termY = CompoundTerm.create(*expo2)
            term1 = MultiParameterTerm((0, termX))
            term1.coefficient = 10
            term2 = MultiParameterTerm((1, termY))
            term2.coefficient = 20
            function = MultiParameterFunction(term1, term2)
            function.constant_coefficient = 200
            points = [np.array([2, 4, 8, 16, 32, 2, 4, 8, 16, 32, 2, 4, 8, 16, 32, 2, 4, 8, 16, 32, 2, 4, 8, 16, 32]),
                      np.array([2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32])]

            values = function.evaluate(np.array(points))
            measurements = [Measurement(Coordinate(p), None, None, v) for p, v in zip(zip(*points), values)]
            modeler = MultiParameterModeler()

            models = modeler.model([measurements])
            self.assertEqual(1, len(models))
            self.assertApproxFunction(function, models[0].hypothesis.function)
    def test_modeling(self):
        for exponents in [
            (0, 1, 1), (0, 1, 2), (1, 4, 0), (1, 3, 0), (1, 4, 1), (1, 3, 1),
            (1, 4, 2), (1, 3, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2), (2, 3, 0),
            (3, 4, 0), (2, 3, 1), (3, 4, 1), (4, 5, 0), (2, 3, 2), (3, 4, 2),
            (1, 1, 0), (1, 1, 1), (1, 1, 2), (5, 4, 0), (5, 4, 1), (4, 3, 0),
            (4, 3, 1), (3, 2, 0), (3, 2, 1), (3, 2, 2), (5, 3, 0), (7, 4, 0),
            (2, 1, 0), (2, 1, 1), (2, 1, 2), (9, 4, 0), (7, 3, 0), (5, 2, 0),
            (5, 2, 1), (5, 2, 2), (8, 3, 0), (11, 4, 0), (3, 1, 0), (3, 1, 1)
        ]:
            term = CompoundTerm.create(*exponents)
            term.coefficient = 10
            function = SingleParameterFunction(term)
            function.constant_coefficient = 200
            points = [2, 4, 8, 16, 32]

            values = function.evaluate(np.array(points))
            measurements = [
                Measurement(Coordinate(p), None, None, v)
                for p, v in zip(points, values)
            ]
            modeler = SingleParameterModeler()

            models = modeler.model([measurements])
            self.assertEqual(1, len(models))
            self.assertApproxFunction(function, models[0].hypothesis.function)
Exemple #4
0
    def generate_building_blocks(poly_exponents,
                                 log_exponents,
                                 force_combination=False):
        if force_combination:
            exponents = itertools.product(poly_exponents, log_exponents)
        else:
            exponents = itertools.chain(
                itertools.product(poly_exponents, [0]),
                itertools.product([0], log_exponents),
                itertools.product(poly_exponents, log_exponents))

        return [CompoundTerm.create(*e) for e in exponents]
Exemple #5
0
    def create_default_building_blocks(allow_log_terms,
                                       allow_negative_exponents=False):
        """
        Creates the default building blocks for the single parameter hypothesis
        that will be used during the search for the best hypothesis.
        """

        if allow_log_terms:
            exponents = [(0, 1, 1), (0, 1, 2), (1, 4, 0), (1, 3, 0), (1, 4, 1),
                         (1, 3, 1), (1, 4, 2), (1, 3, 2), (1, 2, 0), (1, 2, 1),
                         (1, 2, 2), (2, 3, 0), (3, 4, 0), (2, 3, 1), (3, 4, 1),
                         (4, 5, 0), (2, 3, 2), (3, 4, 2), (1, 1, 0), (1, 1, 1),
                         (1, 1, 2), (5, 4, 0), (5, 4, 1), (4, 3, 0), (4, 3, 1),
                         (3, 2, 0), (3, 2, 1), (3, 2, 2), (5, 3, 0), (7, 4, 0),
                         (2, 1, 0), (2, 1, 1), (2, 1, 2), (9, 4, 0), (7, 3, 0),
                         (5, 2, 0), (5, 2, 1), (5, 2, 2), (8, 3, 0),
                         (11, 4, 0), (3, 1, 0), (3, 1, 1)]
            # These were used for relearn
            if allow_negative_exponents:
                exponents += [
                    (-0, 1, -1), (-0, 1, -2), (-1, 4, -1), (-1, 3, -1),
                    (-1, 4, -2), (-1, 3, -2), (-1, 2, -1), (-1, 2, -2),
                    (-2, 3, -1), (-3, 4, -1), (-2, 3, -2), (-3, 4, -2),
                    (-1, 1, -1), (-1, 1, -2), (-5, 4, -1), (-4, 3, -1),
                    (-3, 2, -1), (-3, 2, -2), (-2, 1, -1), (-2, 1, -2),
                    (-5, 2, -1), (-5, 2, -2), (-3, 1, -1)
                ]

        else:
            exponents = [(1, 4, 0), (1, 3, 0), (1, 2, 0), (2, 3, 0), (3, 4, 0),
                         (4, 5, 0), (1, 1, 0), (5, 4, 0), (4, 3, 0), (3, 2, 0),
                         (5, 3, 0), (7, 4, 0), (2, 1, 0), (9, 4, 0), (7, 3, 0),
                         (5, 2, 0), (8, 3, 0), (11, 4, 0), (3, 1, 0)]
            # These were used for relearn
            if allow_negative_exponents:
                exponents += [(-1, 4, 0), (-1, 3, 0), (-1, 2, 0), (-2, 3, 0),
                              (-3, 4, 0), (-4, 5, 0), (-1, 1, 0), (-5, 4, 0),
                              (-4, 3, 0), (-3, 2, 0), (-5, 3, 0), (-7, 4, 0),
                              (-2, 1, 0), (-9, 4, 0), (-7, 3, 0), (-5, 2, 0),
                              (-8, 3, 0), (-11, 4, 0), (-3, 1, 0)]

        hypotheses_building_blocks = [
            CompoundTerm.create(*e) for e in exponents
        ]
        # print the hypothesis building blocks, compound terms in debug mode
        if logging.getLogger().isEnabledFor(logging.DEBUG):
            parameter = Parameter('p')
            for i, compound_term in enumerate(hypotheses_building_blocks):
                logging.debug(
                    f"Compound term {i}: {compound_term.to_string(parameter)}")

        return hypotheses_building_blocks
Exemple #6
0
    def test_get_matching_hypotheses(self):
        modeler = SingleParameterModeler()
        modeler.hypotheses_building_blocks.append(CompoundTerm.create(1, 1, 1))
        for bb in modeler.get_matching_hypotheses(
                [Measurement(Coordinate(15), None, None, 15),
                 Measurement(Coordinate(0.1), None, None, 0.1)]):
            self.assertEqual(len(bb.simple_terms), 1)
            self.assertNotEqual(bb.simple_terms[0].term_type, 'logarithm')

        hbb = modeler.get_matching_hypotheses(
            [Measurement(Coordinate(31), None, None, 31),
             Measurement(Coordinate(1), None, None, 1)])
        self.assertIn(2, (len(bb.simple_terms) for bb in hbb))
        self.assertIn('logarithm', (bb.simple_terms[0].term_type for bb in hbb))
    def test_generate_building_blocks(self):
        modeler = SingleParameterModeler()
        hbb = modeler.generate_building_blocks([], [])
        self.assertListEqual(hbb, [])

        hbb = modeler.generate_building_blocks([2], [3])
        self.assertEqual(len(hbb), 3)
        self.assertIn(CompoundTerm.create(2, 3), hbb)
        self.assertIn(CompoundTerm.create(2, 0), hbb)
        self.assertIn(CompoundTerm.create(0, 3), hbb)

        hbb = modeler.generate_building_blocks([2, 4], [3, 5])
        self.assertEqual(len(hbb), 8)
        self.assertIn(CompoundTerm.create(2, 0), hbb)
        self.assertIn(CompoundTerm.create(4, 0), hbb)
        self.assertIn(CompoundTerm.create(0, 3), hbb)
        self.assertIn(CompoundTerm.create(0, 5), hbb)

        self.assertIn(CompoundTerm.create(2, 3), hbb)
        self.assertIn(CompoundTerm.create(2, 5), hbb)
        self.assertIn(CompoundTerm.create(4, 3), hbb)
        self.assertIn(CompoundTerm.create(4, 5), hbb)

        hbb = modeler.generate_building_blocks([2], [3], True)
        self.assertEqual(len(hbb), 1)
        self.assertIn(CompoundTerm.create(2, 3), hbb)

        hbb = modeler.generate_building_blocks([2, 4], [3, 5], True)
        self.assertEqual(len(hbb), 4)
        self.assertIn(CompoundTerm.create(2, 3), hbb)
        self.assertIn(CompoundTerm.create(2, 5), hbb)
        self.assertIn(CompoundTerm.create(4, 3), hbb)
        self.assertIn(CompoundTerm.create(4, 5), hbb)
    def test_compare(self):
        points = [4, 8, 16, 32, 64, 128]
        data = [
            ((None, (12.279235119728051 + 112.3997486813747, 0)), [
                124.67898380110276, 124.67898380110276, 124.67898380110276,
                124.67898380110276, 124.67898380110276, 124.67898380110276
            ], (None, (124.679, 0.0))),
            (((0, Fraction(1, 1)), (392.837968713381, 683.8645895889935)), [
                1760.5671478913678, 2444.4317374803613, 3128.296327069355,
                3812.1609166583485, 4496.025506247342, 5179.890095836336
            ], ((0.0, 1.0), (392.838, 683.865))),
            (((0, Fraction(2, 1)), (138.69179452369758, 112.44445041582443)), [
                588.4695961869953, 1150.6918482661176, 1937.8030011768885,
                2949.803054919308, 4186.692009493378, 5648.469864899094
            ], ((0.0, 2.0), (138.692, 112.444))),
            (((Fraction(1, 4), 0), (231.8031252715932, 757.5927278025262)), [
                1303.2010356851542, 1505.917143334448, 1746.9885808766455,
                2033.672449625761, 2374.5989460987153, 2780.0311613973026
            ], ((0.25, 0.0), (231.803, 757.593))),
            (((Fraction(1, 3), 0), (147.40207355905747, 740.6554582848072)), [
                1323.1193271863492, 1628.712990128672, 2013.7368787841829,
                2498.836580813641, 3110.023906698286, 3880.071684009308
            ], ((0.333333, 0.0), (147.402, 740.655))),
            (((Fraction(1, 4), Fraction(1, 1)),
              (662.1669933486077, 136.57938776640577)), [
                  1048.4718383883378, 1351.2616987705137, 1754.802095479854,
                  2286.378790293861, 2979.9960635869884, 3877.9422853175015
              ], ((0.25, 1.0), (662.167, 136.579))),
            (((Fraction(1, 3), Fraction(1, 1)),
              (535.6622118860412, 447.75148218635366)), [
                  1957.1845595719178, 3222.171105004163, 5048.714352111772,
                  7643.273950315424, 11281.697784358528, 16331.344702676097
              ], ((0.333333, 1.0), (535.662, 447.751))),
            (((Fraction(1, 4), Fraction(2, 1)),
              (412.5706706079675, 996.343695251814)), [
                  6048.741737048133, 15493.363821169984, 32295.568918666017,
                  59655.521239685964, 101863.64986653095, 164625.65164339435
              ], ((0.25, 2.0), (412.571, 996.344))),
            (((Fraction(1, 3), Fraction(2, 1)),
              (93.11229615417925, 20.367438006670188)), [
                  222.43746622492063, 459.72618027424267, 914.2759402192239,
                  1709.6769220384463, 3026.0233691146855, 5122.739616052577
              ], ((0.333333, 2.0), (93.1123, 20.3674))),
            (((Fraction(1, 2), 0), (939.8019758412179, 402.94640866510485)), [
                1745.6947931714276, 2079.5065279286637, 2551.5876105016373,
                3219.2110800161095, 4163.373245162056, 5498.620184191001
            ], ((0.5, 0.0), (939.802, 402.946))),
            (((Fraction(1, 2), Fraction(1, 1)),
              (198.49843369241415, 330.31007853365884)), [
                  1519.7387478270496, 3001.272390797349, 5483.459690230956,
                  9541.078290708863, 16053.382203308038, 26357.722033338472
              ], ((0.5, 1.0), (198.498, 330.31))),
            (((Fraction(1, 2), Fraction(2, 1)),
              (364.8953574839538, 955.112891429775)), [
                  8005.798488922153, 24678.100241316602, 61492.120408989555,
                  135438.25582322088, 275437.4080892591, 529852.4683831728
              ], ((0.5, 2.0), (364.895, 955.113))),
            (((Fraction(2, 3), 0), (210.3330694987003, 216.92681699057178)), [
                756.9543955249287, 1078.0403374609873, 1587.732499462487,
                2396.8183736036135, 3681.1621413478483, 5719.930789353846
            ], ((0.666667, 0.0), (210.333, 216.927))),
            (((Fraction(3, 4), 0), (584.9013580111865, 547.3819137326248)), [
                2133.1312104080216, 3188.7032237497583, 4963.956667872185,
                7949.565182530901, 12970.740177185866, 21415.31628391976
            ], ((0.75, 0.0), (584.901, 547.382))),
            (((Fraction(2, 3), Fraction(1, 1)),
              (953.7431095545323, 838.6830078923111)), [
                  5180.440612885216, 11017.939204262264, 22254.963733492266,
                  43220.718142861355, 81467.31186721638, 150062.28747711863
              ], ((0.666667, 1.0), (953.743, 838.683))),
            (((Fraction(3, 4), Fraction(1, 1)),
              (355.50475595529707, 203.8586065472728)), [
                  1508.7031806978325, 3264.666020281983, 6878.980165468027,
                  14069.422473092825, 28032.266949776153, 54659.84835672009
              ], ((0.75, 1.0), (355.505, 203.859))),
            (((Fraction(4, 5), 0), (836.4136945625079, 988.9778707606993)), [
                3834.433979810851, 6056.270190754812, 9924.711720732794,
                16660.0596267337, 28386.981453862616, 48804.738258536
            ], ((0.8, 0.0), (836.414, 988.978))),
            (((Fraction(2, 3), Fraction(2, 1)),
              (30.370684174349353, 735.0460670350777)), [
                  7439.17078417381, 26492.029097437142, 74706.39628779484,
                  185250.37318416082, 423416.90529637906, 914811.6843285251
              ], ((0.666667, 2.0), (30.3707, 735.046))),
            (((Fraction(3, 4), Fraction(2, 1)),
              (868.3557741916711, 651.1510359543278)), [
                  8235.288783790882, 28745.079790529722, 84215.68837634563,
                  219888.5845432864, 531287.5324653349, 1215054.5573746935
              ], ((0.75, 2.0), (868.356, 651.151))),
            (((Fraction(1, 1), 0), (218.35982887307853, 796.5944762009765)), [
                3404.7377336769846, 6591.11563848089, 12963.871448088703,
                25709.383067304327, 51200.406305735574, 102182.45278259806
            ], ((1.0, 0.0), (218.36, 796.594))),
            (((Fraction(1, 1), Fraction(1, 1)),
              (729.8185276288646, 193.81268721358396)), [
                  2280.320025337536, 5381.323020754879, 13133.830509298237,
                  31739.8484818023, 75153.8904176451, 174385.9862710001
              ], ((1.0, 1.0), (729.819, 193.813))),
            (((Fraction(1, 1), Fraction(2, 1)),
              (640.8857481060144, 219.18401331861853)), [
                  4147.829961203911, 16422.13470704655, 56751.993157672354,
                  175988.09640300085, 505640.8524342031, 1375363.0172824815
              ], ((1.0, 2.0), (640.886, 219.184))),
            (((Fraction(5, 4), 0), (41.41439439883205, 336.0107050284518)), [
                1942.1779790139603, 4562.217551923606, 10793.75695530929,
                25614.93894716142, 60865.84910208294, 144707.1154351916
            ], ((1.25, 0.0), (41.4144, 336.011))),
            (((Fraction(5, 4), Fraction(1, 1)),
              (334.34344019665406, 396.1666489172391)), [
                  4816.457423065935, 16324.82895624065, 51043.67450160326,
                  151094.0866783297, 430617.2857956476, 1194290.5953048149
              ], ((1.25, 1.0), (334.343, 396.167))),
            (((Fraction(4, 3), 0), (646.7639733950962, 836.1733802023176)), [
                5956.133986838953, 14025.538056632176, 34359.162151911856,
                85596.68418849679, 214707.14930518836, 540045.1348296632
            ], ((1.33333, 0.0), (646.764, 836.173))),
            (((Fraction(4, 3), Fraction(1, 1)),
              (961.3235324936308, 976.4308028867101)), [
                  13361.221801905767, 47830.002071055715, 158430.21598980148,
                  496957.254308979, 1500759.03676648, 4410090.312337113
              ], ((1.33333, 1.0), (961.324, 976.431))),
            (((Fraction(3, 2), 0), (993.5060588040174, 789.8477910359313)), [
                7312.288387091468, 18865.72139149913, 51543.76468510362,
                143971.22872036492, 405395.57506920083, 1144815.2873512912
            ], ((1.5, 0.0), (993.506, 789.848))),
            (((Fraction(3, 2), Fraction(1, 1)),
              (306.3138276450713, 176.2989470011036)), [
                  3127.096979662729, 12273.883197935773, 45438.844259927595,
                  159873.90543152104, 541896.6790150353, 1787463.339791056
              ], ((1.5, 1.0), (306.314, 176.299))),
            (((Fraction(3, 2), Fraction(2, 1)),
              (623.7521800036756, 545.819243769916)), [
                  18089.967980640988, 111778.0688886881, 559542.6578003977,
                  2470719.679039657, 10061164.053347098, 38731727.88533937
              ], ((1.5, 2.0), (623.752, 545.819))),
            (((Fraction(5, 3), 0), (674.515344060474, 93.52470814254)), [
                1617.1853318529588, 3667.3060046217547, 10176.033429851634,
                30839.954953419994, 96443.81648202146, 304723.0940893776
            ], ((1.66667, 0.0), (674.515, 93.5247))),
            (((Fraction(7, 4), 0), (192.79185213528302, 921.0172026961501)), [
                10612.912005989885, 35241.758587692566, 118082.9937972425,
                396726.5846888438, 1333968.1715455244, 4486460.534003467
            ], ((1.75, 0.0), (192.792, 921.017))),
            (((Fraction(2, 1), 0), (601.3899361738712, 695.3677746959734)), [
                11727.274331309445, 45104.92751671617, 178615.54025834304,
                712657.9912248506, 2848827.7950908807, 11393507.010555001
            ], ((2.0, 0.0), (601.39, 695.368))),
            (((Fraction(2, 1), Fraction(1, 1)),
              (95.64610607936808, 399.1728717576563)), [
                  12869.17800232437, 76736.83748354937, 408848.66678591946,
                  2043860.7495052798, 9810168.14242224, 45780433.96224817
              ], ((2.0, 1.0), (95.6461, 399.173))),
            (((Fraction(2, 1), Fraction(2, 1)),
              (910.0933475245264, 649.3303470713025)), [
                  42467.23556008789, 374924.3732605948, 2660567.19495158,
                  16623766.97837287, 95748565.7510935, 521293702.00774235
              ], ((2.0, 2.0), (910.093, 649.33))),
            (((Fraction(9, 4), 0), (991.6538373014305, 196.89404893784854)), [
                5446.857587036748, 22184.29382918959, 101801.40689347989,
                480526.35622160026, 2282055.9737017835, 10851623.32968404
            ], ((2.25, 0.0), (991.654, 196.894))),
            (((Fraction(7, 3), 0), (454.80058623925424, 800.545149328823)), [
                20787.379981321064, 102924.57970032863, 516870.1273219162,
                2603024.963156712, 13116586.527189683, 66101616.62275291
            ], ((2.33333, 0.0), (454.801, 800.545))),
            (((Fraction(5, 2), 0), (444.6771885244102, 788.914623707213)), [
                25689.945147155224, 143253.478519879, 808293.2518647105,
                4570326.31979187, 25851599.066826478, 146236657.2404956
            ], ((2.5, 0.0), (444.677, 788.915))),
            (((Fraction(5, 2), Fraction(1, 1)),
              (561.6799261002398, 118.03818227888634)), [
                  8116.123591948965, 64663.26005666098, 484046.0745404187,
                  3419312.620222673, 23207812.621413387, 153160603.80521256
              ], ((2.5, 1.0), (561.68, 118.038))),
            (((Fraction(5, 2), Fraction(2, 1)),
              (98.86684880610103, 982.9958000733947)), [
                  125922.32925820061, 1601570.0898857696, 16105502.055251304,
                  142353096.47013444, 1159589128.4318285, 8928380108.544924
              ], ((2.5, 2.0), (0.0, 982.996))),
            (((Fraction(8, 3), 0), (119.32012560773262, 194.108049319692)), [
                7945.26627894892, 49810.980751448864, 315641.6975316356,
                2003561.5353809511, 12721184.440340932, 80773847.93606871
            ], ((2.66667, 0.0), (119.32, 194.108))),
            (((Fraction(11, 4), 0), (335.21389505653997, 713.4600389668701)), [
                32622.72952123845, 217538.8630750938, 1461501.3736992066,
                9829850.300849823, 66125167.21631561, 444833408.7346114
            ], ((2.75, 0.0), (335.214, 713.46))),
            (((Fraction(3, 1), 0), (854.0891091206599, 475.68703018220896)), [
                31298.059040782035, 244405.84856241164, 1949268.1647354485,
                15588166.694119744, 124699354.92919411, 997588860.809789
            ], ((3.0, 0.0), (854.089, 475.687))),
            (((Fraction(3, 1), Fraction(1, 1)),
              (498.14812816021515, 788.4374477528575)), [
                  101418.14144052597, 1211538.0678765494, 12918257.292110976,
                  129178089.58795632, 1240105375.9704788, 11574312691.156733
              ], ((3.0, 1.0), (498.148, 788.437))),
        ]
        modeler = SingleParameterModeler()
        modeler.use_crossvalidation = False
        for orig, values, (exponents, coeff) in data:
            if exponents:
                term = CompoundTerm.create(*exponents)
                term.coefficient = coeff[1]
                function = SingleParameterFunction(term)
            else:
                function = SingleParameterFunction()
            function.constant_coefficient = coeff[0]

            measurements = [
                Measurement(Coordinate(p), None, None, v)
                for p, v in zip(points, values)
            ]
            models = modeler.model([measurements])
            self.assertEqual(1, len(models))
            self.assertApproxFunction(function,
                                      models[0].hypothesis.function,
                                      places=3)
Exemple #9
0
 def build_hypothesis(p, l, i):
     simple_function = SingleParameterFunction(CompoundTerm.create(p, l))
     return SingleParameterRefiningHypothesis(simple_function, self.use_median, i)