Exemple #1
0
    def detect(self, image_obj, bbox_objs=None, batch_size=2):
        if bbox_objs is None:
            x2, y2 = image_obj.pil_image_obj.size
            bbox_objs = [BoundedBoxObject(0, 0, x2, y2, '', 0, '')]

        n_bbox = len(bbox_objs)
        result_objects = []
        for row_idx, batch_start, batch_end in chunk_with_index(
                range(n_bbox), batch_size):
            batch_bbox_objs = bbox_objs[batch_start:batch_end]
            objs = image_obj.fetch_bbox_pil_objs(batch_bbox_objs)
            objects_frame = resize_and_stack_image_objs(self.image_size, objs)
            objects_frame = np.transpose(objects_frame, (0, 3, 1, 2))
            objects_embedding = self.model.get_faces_feature(objects_frame)
            similar_matrix = objects_embedding.dot(
                self.registered_images_embedding.T)
            detected_idx = similar_matrix.argmax(1)
            for idx, bbox in enumerate(batch_bbox_objs):
                x1, y1, x2, y2, _, _, _ = bbox
                label = self.registered_ids[detected_idx[idx]]
                score = similar_matrix[idx, detected_idx[idx]]
                if score < self.threshold:
                    label = self.unknown
                result_objects.append(
                    BoundedBoxObject(x1, y1, x2, y2, label, score, ''))

        image_dict = {
            'image_id': image_obj.image_id,
            'detected_objects': result_objects,
        }
        detection_result = DetectionResult(image_dict)
        return detection_result
Exemple #2
0
    def detect(self, image_obj) -> DetectionResult:
        frame = np.array(image_obj.pil_image_obj)
        if self.resize is not None:
            frame = cv2.resize(frame, self.resize)
            ori_height, ori_width = frame.shape[:2]
            x_scale_up_ratio = ori_width / self.resize[0]
            y_scale_up_ratio = ori_height / self.resize[1]
        else:
            x_scale_up_ratio = 1
            y_scale_up_ratio = 1

        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

        persons = self.person_cascade.detectMultiScale(gray, 1.1, 1)
        persons = np.array([[x, y, x + w, y + h] for (x, y, w, h) in persons])
        picked_idx = non_max_suppression(persons,
                                         probs=None,
                                         overlapThresh=0.65)
        detected_objects = []
        for idx in picked_idx:
            x1, y1, x2, y2 = persons[idx]
            x1 = x1 * x_scale_up_ratio
            x2 = x2 * x_scale_up_ratio
            y1 = y1 * y_scale_up_ratio
            y2 = y2 * y_scale_up_ratio
            detected_objects.append(
                BoundedBoxObject(x1, y1, x2, y2, 'person', 0, ''))

        image_dict = {
            'image_id': image_obj.image_id,
            'detected_objects': detected_objects,
        }
        detection_result = DetectionResult(image_dict)

        return detection_result
Exemple #3
0
    def detect(self, image_obj) -> DetectionResult:
        frame = np.array(image_obj.pil_image_obj)
        rects, weights = self.hog.detectMultiScale(frame,
                                                   winStride=(3, 3),
                                                   padding=(16, 16),
                                                   scale=1.05)

        rects = np.array([[x, y, x + w, y + h] for (x, y, w, h) in rects])

        picked_idx = non_max_suppression(rects, probs=None, overlapThresh=0.65)
        detected_objects = []
        for idx in picked_idx:
            x1, y1, x2, y2 = rects[idx]
            score = weights[idx][0]
            if score < self.threshold:
                continue
            detected_objects.append(
                BoundedBoxObject(x1, y1, x2, y2, 'person', score, ''))

        image_dict = {
            'image_id': image_obj.image_id,
            'detected_objects': detected_objects,
        }
        detection_result = DetectionResult(image_dict)

        return detection_result
Exemple #4
0
    def detect_frame(self, frame):
        detected_objects = []
        ret = self.face_detector.detect_face(frame, det_type=0)
        if ret:
            bbox, _ = ret

            for idx in range(bbox.shape[0]):
                x1, y1, x2, y2, score = bbox[idx]
                detected_objects.append(BoundedBoxObject(x1, y1, x2, y2, 'face', score, ''))
            
        image_dict = {
            'image_id': 'frame',
            'detected_objects': detected_objects,
        }
        detection_result = DetectionResult(image_dict)
        return(detection_result)
Exemple #5
0
    def detect(self, image_obj) -> DetectionResult:
        frame = np.array(image_obj.pil_image_obj)
        ori_height, ori_width = frame.shape[:2]
        frame_resized = cv2.resize(frame, self.resize)
        x_scale_up_ratio = ori_width / self.resize[0]
        y_scale_up_ratio = ori_height / self.resize[1]

        blob = cv2.dnn.blobFromImage(frame_resized, 0.007843, (300, 300),
                                     (127.5, 127.5, 127.5), False)
        # Set to network the input blob
        self.net.setInput(blob)
        # Prediction of network
        detections = self.net.forward()

        detected_objects = []
        for i in range(detections.shape[2]):
            confidence = detections[0, 0, i, 2]  # Confidence of prediction
            if confidence < self.threshold:  # Filter prediction
                continue

            class_id = int(detections[0, 0, i, 1])  # Class label
            label = self.classNames[class_id]
            # Object location
            x1 = int(detections[0, 0, i, 3] * self.resize[0] *
                     x_scale_up_ratio)
            y1 = int(detections[0, 0, i, 4] * self.resize[1] *
                     y_scale_up_ratio)
            x2 = int(detections[0, 0, i, 5] * self.resize[0] *
                     x_scale_up_ratio)
            y2 = int(detections[0, 0, i, 6] * self.resize[1] *
                     y_scale_up_ratio)
            detected_objects.append(
                BoundedBoxObject(x1, y1, x2, y2, label, confidence, ''))

        image_dict = {
            'image_id': image_obj.image_id,
            'detected_objects': detected_objects,
        }
        detection_result = DetectionResult(image_dict)

        return detection_result
Exemple #6
0
    def detect(self, image_obj, label='face', train=True):
        detected_objects = []
        frame = swap_channel_rgb_bgr(np.array(image_obj.pil_image_obj))
        ret = self.face_detector.detect_face(frame, det_type=0)
        if ret:
            bbox, _ = ret

            # boundingboxes shape n, 5
            for idx in range(bbox.shape[0]):
                x1, y1, x2, y2, score = bbox[idx]
                if train: 
                    score=1
                detected_objects.append(BoundedBoxObject(x1, y1, x2, y2, label, score, ''))

        image_dict = {
            'image_id': image_obj.image_id,
            'detected_objects': detected_objects,
        }

        detection_result = DetectionResult(image_dict)
        return detection_result