Exemple #1
0
#Normalise CV data from 0..255 to 0..1
X_CV = DATA_CV[:, 1:].T / 255.0

#Empty list to collect CV errors
CV_error = []

#Let's iterate!
for i in xrange(iterations):

    #Get miniBatch of defined size from whole DATA
    X = getBatch(DATA, batchSize, validDataIndexes)

    #Train on given data/labels
    AE.trainCalc(X, X, iteration=1, debug=True, errorCollect=True)

    #Check CV error every *checkCvEvery* cycles
    if i % checkCvEvery == 0:

        #Caclculate CV error give CV data/labels
        CV_error.append(NNsupport.crossV(X_CV, X_CV, AE))

        #Print current CV error
        print 'CV error: ', CV_error[-1]

        #Draw how error and accuracy evolves vs iterations
        Graph.Builder(name='AE_error.png', error=AE.errorArray, cv=CV_error, legend_on=True)

        #Visualise hidden layers weights
        AE.weightsVisualizer(folder='.', size=(28, 28))
Exemple #2
0
        #Plot predicted decision boundary
        plot(x, y_predicted, 'g.', markeredgewidth=0, label='Predicted boundary')

        #Plot original decision boundary
        plot(x, y, 'r.', markeredgewidth=0, label='Original boundary')

        #Plot raw data
        plot(data[0, :], data[1, :], 'b,', label='data')

        #Draw legend
        legend(loc='upper right', fontsize=10, numpoints=3, shadow=True, fancybox=True)

        #Eanble grid
        grid()

        #Save plot to file
        savefig('data' + str(i) + '.png', dpi=120)

        #Close and clear current plot
        close()

        #Estimate Neural Network error (square error, "distance" between real and predicted value) on cross-validation
        cv_err.append(NNsupport.crossV(CV_labels, CV, NN))

        #Estimate network's accuracy
        accuracy = np.mean(CV_labels == np.round(NN.out))
        acc.append(accuracy)

        #Draw how error and accuracy evolves vs iterations
        Graph.Builder(name='NN_error.png', error=NN.errorArray, cv=cv_err, accuracy=acc, legend_on=True)
Exemple #3
0
# Normalise CV data from 0..255 to 0..1
X_CV = DATA_CV[:, 1:].T / 255.0

# Empty list to collect CV errors
CV_error = []

# Let's iterate!
for i in xrange(iterations):

    # Get miniBatch of defined size from whole DATA
    X = getBatch(DATA, batchSize, validDataIndexes)

    # Train on given data/labels
    AE.trainCalc(X, X, iteration=1, debug=True, errorCollect=True)

    # Check CV error every *checkCvEvery* cycles
    if i % checkCvEvery == 0:

        # Caclculate CV error give CV data/labels
        CV_error.append(NNsupport.crossV(X_CV, X_CV, AE))

        # Print current CV error
        print "CV error: ", CV_error[-1]

        # Draw how error and accuracy evolves vs iterations
        Graph.Builder(name="AE_error.png", error=AE.errorArray, cv=CV_error, legend_on=True)

        # Visualise hidden layers weights
        AE.weightsVisualizer(folder=".", size=(28, 28))