Exemple #1
0
def verify():
    backend.clear_session()

    uploaded_files = request.files
    filenames = list(uploaded_files)
    # need to cast to list type
    file_items = list(uploaded_files.values())

    # only one face on each image can be detected
    # thus it requires at least two images
    if len(uploaded_files) < 2:
        return jsonify(["don't upload less than 2 pictures"])
    # extract faces
    faces = [extract_face(f) for f in file_items]

    # user may upload images without a face
    if any(elem is None for elem in faces):
        return jsonify(["don't upload pictures without faces"])

    embeddings = get_embeddings(faces)
    results = []
    for x in range(1, len(embeddings)):
        result_cosine = is_match(embeddings[0], embeddings[x])
        # need to cast the compareration result to bool type
        # because threshold is a numpy bool which will cause
        # serialization problem when jsonify
        r = MatchingResult(x, result_cosine, bool(result_cosine <= threshold))
        results.append(r)
    return jsonify([ob.__dict__ for ob in results])
 def post(self):
     parse = reqparse.RequestParser()
     parse.add_argument('source',
                        type=werkzeug.datastructures.FileStorage,
                        location='files')
     parse.add_argument('target',
                        type=werkzeug.datastructures.FileStorage,
                        location='files')
     args = parse.parse_args()
     sourceImage = face.extract_face(args['source'])
     targetImage = face.extract_face(args['target'])
     distance = None
     with graph.as_default():
         sourceEmbedding = face.get_embedding(model, sourceImage)
         targetEmbedding = face.get_embedding(model, targetImage)
         distance = facenet.distance(sourceEmbedding, targetEmbedding)
     return {'distance': distance.tolist()}
Exemple #3
0
def faces():
    if request.method == 'POST':
        f = request.files['image']
        filename = f.filename
        path = os.path.join(UPLOAD_FLODER, filename)
        f.save(path)
        w = getwidth(path)
        px = extract_face(path)
        cv2.imwrite('./static/predict/{}'.format(filename), px)
        name = facenett(path, filename)
        folder_path = (r'C:\Users\Por\Desktop\proj\data')
        test = os.listdir(folder_path)
        for images in test:
            if images.endswith(".jpg"):
                os.remove(os.path.join(folder_path, images))

        return render_template('faces.html',
                               fileupload=True,
                               img_name=filename,
                               w=w,
                               name=name)
    return render_template('faces.html',
                           fileupload=False,
                           img_name="freeai.png")
Exemple #4
0
from keras.models import load_model
import mtcnn
import face
import os
from matplotlib import pyplot
import facenet.src.facenet as facenet

os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

# load the model
model = load_model('facenet_keras.h5')
# summarize input and output shape
print(model.inputs)
print(model.outputs)

image1 = face.extract_face("./Z.jpg")
image2 = face.extract_face("./k.jpg")
image3 = face.extract_face("./KK.jpg")
embedding1 = face.get_embedding(model, image1)
embedding2 = face.get_embedding(model, image2)
embedding3 = face.get_embedding(model, image3)
print("distance")
print("Z-k")
print(facenet.distance(embedding1, embedding2))
print("Z-KK")
print(facenet.distance(embedding1, embedding3))
print("k-KK")
print(facenet.distance(embedding2, embedding3))
print("DONE")
Exemple #5
0
def swap_faces(FRAME, gray, faces):
    '''
	:param FRAME:       Single image frame from the camera
	:param gray:        Grayscale image of FRAME

	:return swapp:      Face swapped image
	'''

    facial_landmarks = np.zeros((n_faces, n_markers, 2))  # create mat

    for m in range(0, n_faces):
        landmarks = predictor(gray, faces[m])  # dlib
        for n in range(marker_start, marker_end):
            x = landmarks.part(n).x
            y = landmarks.part(n).y
            # cv2.circle(FRAME, (x, y), 4, (0, 0, 255), -1) #visualize landmarks, BGR

            facial_landmarks[m, n - marker_start] = (x, y)

    # ----------------------Convex hull (convex.py)------------------------------------------
    # Finds the convex hull of the faces, based on out own convex hull algorithm, (style of jarvis match)
    face1_hull = get_hull(facial_landmarks[0])
    face2_hull = get_hull(facial_landmarks[1])

    # ---------------------Extract face and mask (face.py)---------------------------------------
    face1_mask, face1 = extract_face(face1_hull, FRAME)
    face2_mask, face2 = extract_face(face2_hull, FRAME)

    if DEBUG:
        cv2.imshow('face1', face1)
        cv2.imshow('face2', face2)
        cv2.imshow('mask1', face1_mask)
        cv2.imshow('mask2', face2_mask)
    # --------------------- Delaunay triangulation (face.py)------------------------

    tri_face1_in_face2 = delaunay_triangulation(face1_hull,
                                                facial_landmarks[0],
                                                facial_landmarks[1], FRAME,
                                                DEBUG)
    tri_face2_in_face1 = delaunay_triangulation(face2_hull,
                                                facial_landmarks[1],
                                                facial_landmarks[0], FRAME,
                                                DEBUG)

    # --------------------Affine transform (affine_trans.py)----------------------------------------------

    swapp = np.copy(FRAME)
    if DEBUG:
        cv2.imshow('before affine transform and swapping', swapp)
        cv2.waitKey()

    for i in range(len(tri_face1_in_face2[0])):
        morph_affine(tri_face1_in_face2[0][i], tri_face1_in_face2[1][i], FRAME,
                     swapp, DEBUG)

    for i in range(len(tri_face2_in_face1[0])):
        morph_affine(tri_face2_in_face1[0][i], tri_face2_in_face1[1][i], FRAME,
                     swapp, DEBUG)

    if DEBUG:
        cv2.imshow('after affine transform and swapping', swapp)
        cv2.waitKey()

    # --------------------- Blur face edge, Laplace blending (face.py)----------------------------

    # Figure out blur amount:
    # Use facials landmarks 0 and 16 for width, see landmark_numbers.png
    width_face1 = abs(facial_landmarks[0][16][0] - facial_landmarks[0][0][0]
                      )  # width of face in pixels in horizontal direction.
    width_face2 = abs(facial_landmarks[1][16][0] - facial_landmarks[1][0][0])
    blur_size = int(((width_face1 + width_face2) / 2) * 0.5)
    if blur_size % 2 == 0:
        blur_size += 1

    swapp = laplace_blend(FRAME, swapp, face1_mask, face2_mask, blur_size)
    return swapp