Exemple #1
0
    def load_data(self):
        '''
        Loads data to use in training.
        '''

        # Load data

        if self.dataset == FaceRecData.Yalefaces_A:
            self.instances = ImageIO.loadYalefacesImages(self.data_directory,
                                                         loud=False)
        elif self.dataset == FaceRecData.Yalefaces_B:
            self.instances = ImageIO.loadExtendedCroppedYalefaces(
                self.data_directory, loud=False)
        else:
            raise RuntimeError('FaceRecTest not assigned a valid dataset')

        # Sample from each class to create train/dev/test partitions

        self.trn_data = list()
        self.dev_data = list()
        self.tst_data = list()

        # Sort instances by label
        classes = dict()
        for instance in self.instances:
            label = instance[0]
            if label not in classes.keys():
                classes[label] = list()
            classes[label].append(instance)

        num_labels = max(classes.keys()) + 1

        # Calculate how many samples should be in each partition
        num_trn = int((self.trn_part / 100.0) * len(self.instances))
        num_dev = int((self.dev_part / 100.0) * len(self.instances))
        num_tst = int((self.tst_part / 100.0) * len(self.instances))

        # If any leftovers, give more to training partition
        num_trn += len(self.instances) - sum((num_trn, num_dev, num_tst))

        # Partition trn/dev/tst

        def partition(src, dest, num):

            num_labels = max(src.keys()) + 1
            count = 0

            i = 0
            while i < num:
                instances = src[count % num_labels]
                if len(instances) > 0:
                    idx = random.randint(0, len(instances) - 1)
                    dest.append(instances.pop(idx))
                    i += 1
                count += 1

        partition(classes, self.trn_data, num_trn)
        partition(classes, self.dev_data, num_dev)
        partition(classes, self.tst_data, num_tst)
Exemple #2
0
    def load_data(self):
        '''
        Loads data to use in training.
        '''

        # Load data

        if self.dataset == FaceRecData.Yalefaces_A:
            self.instances = ImageIO.loadYalefacesImages(
                    self.data_directory, loud=False)
        elif self.dataset == FaceRecData.Yalefaces_B:
            self.instances = ImageIO.loadExtendedCroppedYalefaces(
                    self.data_directory, loud=False)
        else:
            raise RuntimeError('FaceRecTest not assigned a valid dataset')

        # Sample from each class to create train/dev/test partitions

        self.trn_data = list()
        self.dev_data = list()
        self.tst_data = list()

        # Sort instances by label
        classes = dict()
        for instance in self.instances:
            label = instance[0]
            if label not in classes.keys():
                classes[label] = list()
            classes[label].append(instance)

        num_labels = max(classes.keys())+1

        # Calculate how many samples should be in each partition
        num_trn = int( (self.trn_part/100.0) * len(self.instances) )
        num_dev = int( (self.dev_part/100.0) * len(self.instances) )
        num_tst = int( (self.tst_part/100.0) * len(self.instances) )

        # If any leftovers, give more to training partition
        num_trn += len(self.instances) - sum((num_trn, num_dev, num_tst))

        # Partition trn/dev/tst

        def partition(src, dest, num):

            num_labels = max(src.keys())+1
            count = 0

            i = 0
            while i < num:
                instances = src[count % num_labels]
                if len(instances) > 0:
                    idx = random.randint(0, len(instances)-1)
                    dest.append( instances.pop(idx) )
                    i += 1
                count += 1

        partition(classes, self.trn_data, num_trn)
        partition(classes, self.dev_data, num_dev)
        partition(classes, self.tst_data, num_tst)
Exemple #3
0
    def load_data(self):
        '''
        Loads data to use in training.
        '''

        self.face_instances = list()
        self.non_face_instances = list()

        # Load data

        if self.dataset == FaceDetData.MIT_Face_Data:
            self.face_instances.extend(
                ImageIO.loadFaceDetectionImages(
                    self.data_directory + '/train/face', 1))
            self.face_instances.extend(
                ImageIO.loadFaceDetectionImages(
                    self.data_directory + '/test/face', 1))
            self.non_face_instances.extend(
                ImageIO.loadFaceDetectionImages(
                    self.data_directory + '/train/non-face', 0))
            self.non_face_instances.extend(
                ImageIO.loadFaceDetectionImages(
                    self.data_directory + '/test/non-face', 0))
        else:
            raise RuntimeError('FaceDetTest not assigned a valid dataset')

        img_size = numpy.shape(self.face_instances[0][0])

        self.face_detector = FaceDetector(self.iterations, img_size)

        self.total_face_instances = len(self.face_instances)
        self.total_non_face_instances = len(self.non_face_instances)

        # Sample from each class to create train/dev/test partitions

        self.face_trn_data = list()
        self.non_face_trn_data = list()
        self.face_dev_data = list()
        self.non_face_dev_data = list()
        self.face_tst_data = list()
        self.non_face_tst_data = list()

        # Calculate how many samples should be in each partition
        num_face_trn = int((self.trn_part / 100.0) * len(self.face_instances))
        num_non_face_trn = int(
            (self.trn_part / 100.0) * len(self.non_face_instances))
        num_face_dev = int((self.dev_part / 100.0) * len(self.face_instances))
        num_non_face_dev = int(
            (self.dev_part / 100.0) * len(self.non_face_instances))
        num_face_tst = int((self.tst_part / 100.0) * len(self.face_instances))
        num_non_face_tst = int(
            (self.tst_part / 100.0) * len(self.non_face_instances))

        # If any leftovers, give more to training partition
        num_face_trn += len(self.face_instances) - sum(
            (num_face_trn, num_face_dev, num_face_tst))
        num_non_face_trn += len(self.non_face_instances) - sum(
            (num_non_face_trn, num_non_face_dev, num_non_face_tst))

        # Partition trn/dev/tst

        def partition(src, dest, num):
            i = 0
            while i < num:
                if len(src) > 0:
                    idx = random.randint(0, len(src) - 1)
                    dest.append(src.pop(idx))
                    i += 1

        partition(self.face_instances, self.face_trn_data, num_face_trn)
        partition(self.non_face_instances, self.non_face_trn_data,
                  num_non_face_trn)
        partition(self.face_instances, self.face_dev_data, num_face_dev)
        partition(self.non_face_instances, self.non_face_dev_data,
                  num_non_face_dev)
        partition(self.face_instances, self.face_tst_data, num_face_tst)
        partition(self.non_face_instances, self.non_face_tst_data,
                  num_non_face_tst)
Exemple #4
0
    def load_data(self):
        '''
        Loads data to use in training.
        '''
        
        self.face_instances     = list()
        self.non_face_instances = list()

        # Load data

        if self.dataset == FaceDetData.MIT_Face_Data:
            self.face_instances.extend(ImageIO.loadFaceDetectionImages(self.data_directory + '/train/face', 1))
            self.face_instances.extend(ImageIO.loadFaceDetectionImages(self.data_directory + '/test/face', 1))
            self.non_face_instances.extend(ImageIO.loadFaceDetectionImages(self.data_directory + '/train/non-face', 0))
            self.non_face_instances.extend(ImageIO.loadFaceDetectionImages(self.data_directory + '/test/non-face', 0))
        else:
            raise RuntimeError('FaceDetTest not assigned a valid dataset')
        
        img_size = numpy.shape(self.face_instances[0][0])
        
        self.face_detector = FaceDetector(self.iterations, img_size)
        
        self.total_face_instances = len(self.face_instances)
        self.total_non_face_instances = len(self.non_face_instances)

        # Sample from each class to create train/dev/test partitions

        self.face_trn_data      = list()
        self.non_face_trn_data  = list()
        self.face_dev_data      = list()
        self.non_face_dev_data  = list()
        self.face_tst_data      = list()
        self.non_face_tst_data  = list()

        # Calculate how many samples should be in each partition
        num_face_trn        = int( (self.trn_part/100.0) * len(self.face_instances) )
        num_non_face_trn    = int( (self.trn_part/100.0) * len(self.non_face_instances) )
        num_face_dev        = int( (self.dev_part/100.0) * len(self.face_instances) )
        num_non_face_dev    = int( (self.dev_part/100.0) * len(self.non_face_instances) )
        num_face_tst        = int( (self.tst_part/100.0) * len(self.face_instances) )
        num_non_face_tst    = int( (self.tst_part/100.0) * len(self.non_face_instances) )

        # If any leftovers, give more to training partition
        num_face_trn += len(self.face_instances) - sum((num_face_trn, num_face_dev, num_face_tst))
        num_non_face_trn += len(self.non_face_instances) - sum((num_non_face_trn, num_non_face_dev, num_non_face_tst))

        # Partition trn/dev/tst

        def partition(src, dest, num):
            i = 0
            while i < num:
                if len(src) > 0:
                    idx = random.randint(0, len(src)-1)
                    dest.append( src.pop(idx) )
                    i += 1

        partition(self.face_instances, self.face_trn_data, num_face_trn)
        partition(self.non_face_instances, self.non_face_trn_data, num_non_face_trn)
        partition(self.face_instances, self.face_dev_data, num_face_dev)
        partition(self.non_face_instances, self.non_face_dev_data, num_non_face_dev)
        partition(self.face_instances, self.face_tst_data, num_face_tst)
        partition(self.non_face_instances, self.non_face_tst_data, num_non_face_tst)