Exemple #1
0
def demographic_parity(df_test_encoded, predictions, print_=False):
    dpd_sex = demographic_parity_difference(df_test_encoded.earnings, predictions, sensitive_features=df_test_encoded.sex)
    dpr_sex = demographic_parity_ratio(df_test_encoded.earnings, predictions, sensitive_features=df_test_encoded.sex)

    if (print_):
        print(f"Demographic parity difference sex:", dpd_sex)
        print(f"Demographic parity ratio sex:", dpr_sex)
Exemple #2
0
def fair_metrics(bst, data, column, thresh):
    tr = list(data.get_label())
    best_iteration = bst.best_ntree_limit
    pred = bst.predict(data, ntree_limit=best_iteration)
    pred = [1 if p > thresh else 0 for p in pred]
    na0 = 0
    na1 = 0
    nd0 = 0
    nd1 = 0
    for p, c in zip(pred, column):
        if (p == 1 and c == 0):
            nd1 += 1
        if (p == 1 and c == 1):
            na1 += 1
        if (p == 0 and c == 0):
            nd0 += 1
        if (p == 0 and c == 1):
            na0 += 1
    Pa1, Pd1, Pa0, Pd0 = na1 / (na1 + na0), nd1 / (nd1 + nd0), na0 / (
        na1 + na0), nd0 / (nd1 + nd0)
    dsp_metric = np.abs(Pd1 - Pa1)
    #dsp_metric = np.abs((first-second)/(first+second))
    sr_metric = selection_rate(tr, pred, pos_label=1)
    dpd_metric = demographic_parity_difference(tr,
                                               pred,
                                               sensitive_features=column)
    dpr_metric = demographic_parity_ratio(tr, pred, sensitive_features=column)
    eod_metric = equalized_odds_difference(tr, pred, sensitive_features=column)

    return dsp_metric, sr_metric, dpd_metric, dpr_metric, eod_metric
def test_against_demographic_parity_ratio(method):
    expected = metrics.demographic_parity_ratio(
        y_true, y_pred, sensitive_features=sf_binary, method=method
    )
    actual = metrics.selection_rate_ratio(
        y_true, y_pred, sensitive_features=sf_binary, method=method
    )
    assert expected == actual
def test_demographic_parity_ratio(agg_method):
    actual = demographic_parity_ratio(y_t,
                                      y_p,
                                      sensitive_features=g_1,
                                      method=agg_method)

    gm = MetricFrame(selection_rate, y_t, y_p, sensitive_features=g_1)

    assert actual == gm.ratio(method=agg_method)
def demographic_parity_ratio(y, c, y_hat):
    c = c.reshape(-1)
    assert y_hat.shape[1] == 2
    assert y.shape[0] == c.shape[0]

    y_pred = y_hat[:, 1] > 0.5
    return fairlearn_metrics.demographic_parity_ratio(y,
                                                      y_pred,
                                                      sensitive_features=c)
Exemple #6
0
def __binary_group_fairness_measures(X,
                                     prtc_attr,
                                     y_true,
                                     y_pred,
                                     y_prob=None,
                                     priv_grp=1):
    """[summary]

    Args:
        X (pandas DataFrame): Sample features
        prtc_attr (named array-like): values for the protected attribute
            (note: protected attribute may also be present in X)
        y_true (pandas DataFrame): Sample targets
        y_pred (pandas DataFrame): Sample target predictions
        y_prob (pandas DataFrame, optional): Sample target probabilities. Defaults
            to None.

    Returns:
        [type]: [description]
    """
    pa_names = prtc_attr.columns.tolist()
    gf_vals = {}
    gf_key = 'Group Fairness'
    gf_vals['Statistical Parity Difference'] = \
        aif_mtrc.statistical_parity_difference(y_true, y_pred, prot_attr=pa_names)
    gf_vals['Disparate Impact Ratio'] = \
        aif_mtrc.disparate_impact_ratio(y_true, y_pred, prot_attr=pa_names)
    if not helper.is_tutorial_running() and not len(pa_names) > 1:
        gf_vals['Demographic Parity Difference'] = \
            fl_mtrc.demographic_parity_difference(y_true, y_pred,
                                                  sensitive_features=prtc_attr)
        gf_vals['Demographic Parity Ratio'] = \
            fl_mtrc.demographic_parity_ratio(y_true, y_pred,
                                             sensitive_features=prtc_attr)
    gf_vals['Average Odds Difference'] = \
        aif_mtrc.average_odds_difference(y_true, y_pred, prot_attr=pa_names)
    gf_vals['Equal Opportunity Difference'] = \
        aif_mtrc.equal_opportunity_difference(y_true, y_pred, prot_attr=pa_names)
    if not helper.is_tutorial_running() and not len(pa_names) > 1:
        gf_vals['Equalized Odds Difference'] = \
            fl_mtrc.equalized_odds_difference(y_true, y_pred,
                                              sensitive_features=prtc_attr)
        gf_vals['Equalized Odds Ratio'] = \
            fl_mtrc.equalized_odds_ratio(y_true, y_pred,
                                         sensitive_features=prtc_attr)
    gf_vals['Positive Predictive Parity Difference'] = \
        aif_mtrc.difference(sk_metric.precision_score, y_true,
                            y_pred, prot_attr=pa_names, priv_group=priv_grp)
    gf_vals['Balanced Accuracy Difference'] = \
        aif_mtrc.difference(sk_metric.balanced_accuracy_score, y_true,
                            y_pred, prot_attr=pa_names, priv_group=priv_grp)
    if y_prob is not None:
        gf_vals['AUC Difference'] = \
            aif_mtrc.difference(sk_metric.roc_auc_score, y_true, y_prob,
                                prot_attr=pa_names, priv_group=priv_grp)
    return (gf_key, gf_vals)
def test_demographic_parity_ratio_weighted(agg_method):
    actual = demographic_parity_ratio(y_t,
                                      y_p,
                                      sensitive_features=g_1,
                                      sample_weight=s_w,
                                      method=agg_method)

    gm = MetricFrame(selection_rate,
                     y_t,
                     y_p,
                     sensitive_features=g_1,
                     sample_params={'sample_weight': s_w})

    assert actual == gm.ratio(method=agg_method)
Exemple #8
0
def conditional_demographic_parity_ratio(labels, pred, attr, groups):
    """
    Calculate conditional demographic parity by calculating the average
    demographic parity ratio across bins defined by `groups`.
    """
    ratios = []

    for group in set(groups):
        mask = groups == group

        ratios.append(
            demographic_parity_ratio(labels[mask],
                                     pred[mask],
                                     sensitive_features=attr[mask]))

    return np.mean(ratios)
Exemple #9
0
def evaluate_model(model, device, criterion, data_loader):
    model.eval()
    y_true = []
    y_pred = []
    y_out = []
    sensitives = []
    for i, data in enumerate(data_loader):
        x, y, sensitive_features = data
        x = x.to(device)
        y = y.to(device)
        sensitive_features = sensitive_features.to(device)
        with torch.no_grad():
            logit = model(x)
        # logit : binary prediction size=(b, 1)
        bina = (torch.sigmoid(logit) > 0.5).float()
        y_true += y.cpu().tolist()
        y_pred += bina.cpu().tolist()
        y_out += torch.sigmoid(logit).tolist()
        sensitives += sensitive_features.cpu().tolist()
    result = {}
    result["acc"] = skm.accuracy_score(y_true, y_pred)
    result["f1score"] = skm.f1_score(y_true, y_pred)
    result["AUC"] = skm.roc_auc_score(y_true, y_out)
    result['DP'] = {
        "diff":
        flm.demographic_parity_difference(
            y_true, y_pred, sensitive_features=sensitive_features),
        "ratio":
        flm.demographic_parity_ratio(y_true,
                                     y_pred,
                                     sensitive_features=sensitive_features),
    }
    result["EO"] = {
        "diff":
        flm.equalized_odds_difference(y_true,
                                      y_pred,
                                      sensitive_features=sensitive_features),
        "ratio":
        flm.equalized_odds_ratio(y_true,
                                 y_pred,
                                 sensitive_features=sensitive_features),
    }
    return result