def load_dataset(self, split, combine=False, **kwargs):
        """Load a given dataset split (e.g., train, valid, test)."""
        def get_path(key, split):
            return os.path.join(self.cfg.data, key, split)

        def make_dataset(key, dictionary):
            split_path = get_path(key, split)

            try:
                dataset = data_utils.load_indexed_dataset(
                    split_path,
                    dictionary,
                    combine=combine,
                )
            except Exception as e:
                if "StorageException: [404] Path not found" in str(e):
                    logger.warning(f"dataset {e} not found")
                    dataset = None
                else:
                    raise e
            return dataset

        input0 = make_dataset("input0", self.source_dictionary)
        assert input0 is not None, "could not find dataset: {}".format(
            get_path("input0", split))
        input1 = make_dataset("input1", self.source_dictionary)

        if self.cfg.init_token is not None:
            input0 = PrependTokenDataset(input0, self.cfg.init_token)

        if input1 is None:
            src_tokens = input0
        else:
            if self.cfg.separator_token is not None:
                input1 = PrependTokenDataset(input1, self.cfg.separator_token)

            src_tokens = ConcatSentencesDataset(input0, input1)

        with data_utils.numpy_seed(self.cfg.seed):
            shuffle = np.random.permutation(len(src_tokens))

        src_tokens = maybe_shorten_dataset(
            src_tokens,
            split,
            self.cfg.shorten_data_split_list,
            self.cfg.shorten_method,
            self.max_positions(),
            self.cfg.seed,
        )

        dataset = {
            "id": IdDataset(),
            "net_input": {
                "src_tokens":
                RightPadDataset(
                    src_tokens,
                    pad_idx=self.source_dictionary.pad(),
                ),
                "src_lengths":
                NumelDataset(src_tokens, reduce=False),
            },
            "nsentences": NumSamplesDataset(),
            "ntokens": NumelDataset(src_tokens, reduce=True),
        }

        if self.cfg.add_prev_output_tokens:
            prev_tokens_dataset = RightPadDataset(
                RollDataset(src_tokens, 1),
                pad_idx=self.dictionary.pad(),
            )
            dataset["net_input"].update(
                prev_output_tokens=prev_tokens_dataset, )

        if not self.cfg.regression_target:
            label_dataset = make_dataset("label", self.label_dictionary)
            if label_dataset is not None:
                dataset.update(target=OffsetTokensDataset(
                    StripTokenDataset(
                        label_dataset,
                        id_to_strip=self.label_dictionary.eos(),
                    ),
                    offset=-self.label_dictionary.nspecial,
                ))
        else:
            label_path = "{0}.label".format(get_path("label", split))
            if os.path.exists(label_path):

                def parse_regression_target(i, line):
                    values = line.split()
                    assert (
                        len(values) == self.cfg.num_classes
                    ), f'expected num_classes={self.cfg.num_classes} regression target values on line {i}, found: "{line}"'
                    return [float(x) for x in values]

                with open(label_path) as h:
                    dataset.update(target=RawLabelDataset([
                        parse_regression_target(i, line.strip())
                        for i, line in enumerate(h.readlines())
                    ]))

        nested_dataset = NestedDictionaryDataset(
            dataset,
            sizes=[src_tokens.sizes],
        )

        if self.cfg.no_shuffle:
            dataset = nested_dataset
        else:
            dataset = SortDataset(
                nested_dataset,
                # shuffle
                sort_order=[shuffle],
            )

        logger.info("Loaded {0} with #samples: {1}".format(
            split, len(dataset)))

        self.datasets[split] = dataset
        return self.datasets[split]
Exemple #2
0
    def load_dataset(self, split, combine=False, **kwargs):
        """Load a given dataset split (e.g., train, valid, test)."""
        def get_path(type, split):
            return os.path.join(self.args.data, type, split)

        def make_dataset(type, dictionary):
            split_path = get_path(type, split)

            dataset = data_utils.load_indexed_dataset(
                split_path,
                dictionary,
                self.args.dataset_impl,
                combine=combine,
            )
            return dataset

        input0 = make_dataset('input0', self.source_dictionary)
        assert input0 is not None, 'could not find dataset: {}'.format(get_path(type, split))
        input1 = make_dataset('input1', self.source_dictionary)

        if self.args.init_token is not None:
            input0 = PrependTokenDataset(input0, self.args.init_token)

        if input1 is None:
            src_tokens = input0
        else:
            if self.args.separator_token is not None:
                input1 = PrependTokenDataset(input1, self.args.separator_token)

            src_tokens = ConcatSentencesDataset(input0, input1)

        with data_utils.numpy_seed(self.args.seed):
            shuffle = np.random.permutation(len(src_tokens))

        src_tokens = maybe_shorten_dataset(
            src_tokens,
            split,
            self.args.shorten_data_split_whitelist,
            self.args.shorten_method,
            self.args.max_positions,
            self.args.seed,
        )

        dataset = {
            'id': IdDataset(),
            'net_input': {
                'src_tokens': RightPadDataset(
                    src_tokens,
                    pad_idx=self.source_dictionary.pad(),
                ),
                'src_lengths': NumelDataset(src_tokens, reduce=False),
            },
            'nsentences': NumSamplesDataset(),
            'ntokens': NumelDataset(src_tokens, reduce=True),
        }

        if self.args.add_prev_output_tokens:
            prev_tokens_dataset = RightPadDataset(
                RollDataset(src_tokens, 1),
                pad_idx=self.dictionary.pad(),
            )
            dataset['net_input'].update(
                prev_output_tokens=prev_tokens_dataset,
            )

        if not self.args.regression_target:
            label_dataset = make_dataset('label', self.label_dictionary)
            if label_dataset is not None:
                dataset.update(
                    target=OffsetTokensDataset(
                        StripTokenDataset(
                            label_dataset,
                            id_to_strip=self.label_dictionary.eos(),
                        ),
                        offset=-self.label_dictionary.nspecial,
                    )
                )
        else:
            label_path = "{0}.label".format(get_path('label', split))
            if os.path.exists(label_path):
                def parse_regression_target(i, line):
                    values = line.split()
                    assert len(values) == self.args.num_classes, \
                        f'expected num_classes={self.args.num_classes} regression target values on line {i}, found: "{line}"'
                    return [float(x) for x in values]
                dataset.update(
                    target=RawLabelDataset([
                        parse_regression_target(i, line.strip()) for i, line in enumerate(open(label_path).readlines())
                    ])
                )

        nested_dataset = NestedDictionaryDataset(
            dataset,
            sizes=[src_tokens.sizes],
        )

        if self.args.no_shuffle:
            dataset = nested_dataset
        else:
            dataset = SortDataset(
                nested_dataset,
                # shuffle
                sort_order=[shuffle],
            )

        logger.info("Loaded {0} with #samples: {1}".format(split, len(dataset)))

        self.datasets[split] = dataset
        return self.datasets[split]
    def load_dataset(self, split, combine=False, **kwargs):
        """Load a given dataset split (e.g., train, valid, test)."""
        def get_path(type, split):
            return os.path.join(self.args.data, type, split)

        def make_dataset(type, dictionary):
            split_path = get_path(type, split)

            dataset = data_utils.load_indexed_dataset(
                split_path,
                self.source_dictionary,
                self.args.dataset_impl,
                combine=combine,
            )
            return dataset

        input0 = make_dataset("input0", self.source_dictionary)
        assert input0 is not None, "could not find dataset: {}".format(
            get_path(type, split))
        input1 = make_dataset("input1", self.source_dictionary)

        if self.args.init_token is not None:
            input0 = PrependTokenDataset(input0, self.args.init_token)

        if input1 is None:
            src_tokens = input0
        else:
            if self.args.separator_token is not None:
                input1 = PrependTokenDataset(input1, self.args.separator_token)

            src_tokens = ConcatSentencesDataset(input0, input1)

        with data_utils.numpy_seed(self.args.seed):
            shuffle = np.random.permutation(len(src_tokens))

        if self.args.truncate_sequence:
            src_tokens = TruncateDataset(src_tokens, self.args.max_positions)

        dataset = {
            "id": IdDataset(),
            "net_input": {
                "src_tokens":
                RightPadDataset(
                    src_tokens,
                    pad_idx=self.source_dictionary.pad(),
                ),
                "src_lengths":
                NumelDataset(src_tokens, reduce=False),
            },
            "nsentences": NumSamplesDataset(),
            "ntokens": NumelDataset(src_tokens, reduce=True),
        }

        if self.args.add_prev_output_tokens:
            prev_tokens_dataset = RightPadDataset(
                RollDataset(src_tokens, 1),
                pad_idx=self.dictionary.pad(),
            )
            dataset["net_input"].update(
                prev_output_tokens=prev_tokens_dataset, )

        if not self.args.regression_target:
            label_dataset = make_dataset("label", self.target_dictionary)
            if label_dataset is not None:
                dataset.update(target=OffsetTokensDataset(
                    StripTokenDataset(
                        label_dataset,
                        id_to_strip=self.target_dictionary.eos(),
                    ),
                    offset=-self.target_dictionary.nspecial,
                ))
        else:
            label_path = "{0}.label".format(get_path("label", split))
            if os.path.exists(label_path):
                dataset.update(target=RawLabelDataset(
                    [float(x.strip()) for x in open(label_path).readlines()]))

        nested_dataset = NestedDictionaryDataset(
            dataset,
            sizes=[src_tokens.sizes],
        )

        if self.args.no_shuffle:
            dataset = nested_dataset
        else:
            dataset = SortDataset(
                nested_dataset,
                # shuffle
                sort_order=[shuffle],
            )

        print("| Loaded {0} with #samples: {1}".format(split, len(dataset)))

        self.datasets[split] = dataset
        return self.datasets[split]
Exemple #4
0
    def load_dataset(self, split, combine=False, **kwargs):
        """Load a given dataset split (e.g., train, valid, test)."""
        def get_path(key, split):
            return os.path.join(self.args.data, key, split)

        def make_dataset(key, dictionary):
            split_path = get_path(key, split)

            dataset = data_utils.load_indexed_dataset(
                split_path,
                dictionary,
                self.args.dataset_impl,
                combine=combine,
            )
            return dataset

        input0 = make_dataset("input0", self.source_dictionary)
        assert input0 is not None, "could not find dataset: {}".format(
            get_path("input0", split))
        input1 = make_dataset("input1", self.source_dictionary)

        if self.args.init_token is not None:
            input0 = PrependTokenDataset(input0, self.args.init_token)

        if input1 is None:
            src_tokens = input0
        else:
            if self.args.separator_token is not None:
                input1 = PrependTokenDataset(input1, self.args.separator_token)

            src_tokens = ConcatSentencesDataset(input0, input1)

        with data_utils.numpy_seed(self.args.seed):
            shuffle = np.random.permutation(len(src_tokens))

        src_tokens = maybe_shorten_dataset(
            src_tokens,
            split,
            self.args.shorten_data_split_list,
            self.args.shorten_method,
            self.args.max_positions,
            self.args.seed,
        )

        dataset = {
            "id": IdDataset(),
            "net_input": {
                "src_tokens":
                RightPadDataset(
                    src_tokens,
                    pad_idx=self.source_dictionary.pad(),
                ),
                "src_lengths":
                NumelDataset(src_tokens, reduce=False),
            },
            "nsentences": NumSamplesDataset(),
            "ntokens": NumelDataset(src_tokens, reduce=True),
        }

        if self.args.add_prev_output_tokens:
            prev_tokens_dataset = RightPadDataset(
                RollDataset(src_tokens, 1),
                pad_idx=self.dictionary.pad(),
            )
            dataset["net_input"].update(
                prev_output_tokens=prev_tokens_dataset, )

        label_path = "{0}.npz".format(get_path("label", split))
        if os.path.exists(label_path):
            csr_matrix = load_npz(label_path)
            dataset.update(target=CSRLabelDataset(csr_matrix))

        nested_dataset = NestedDictionaryDataset(
            dataset,
            sizes=[src_tokens.sizes],
        )

        if self.args.no_shuffle:
            dataset = nested_dataset
        else:
            dataset = SortDataset(
                nested_dataset,
                # shuffle
                sort_order=[shuffle],
            )

        logger.info("Loaded {0} with #samples: {1}".format(
            split, len(dataset)))

        self.datasets[split] = dataset
        return self.datasets[split]
    def load_dataset(self, split, combine=False, **kwargs):
        """Load a given dataset split (e.g., train, valid, test)."""
        def get_path(split):
            return os.path.join(self.args.data, split)

        def make_dataset(split_path, dictionary):
            dataset = data_utils.load_indexed_dataset(
                split_path,
                self.source_dictionary,
                self.args.dataset_impl,
                combine=combine)
            return dataset

        input0 = make_dataset(
            os.path.join(self.args.data, split), self.source_dictionary)
        assert input0 is not None, 'could not find dataset: {}'.format(
            os.path.join(self.args.data, split))

        if self.args.init_token is not None:
            input0 = PrependTokenDataset(input0, self.args.init_token)

        src_tokens = input0

        with data_utils.numpy_seed(self.args.seed):
            shuffle = np.random.permutation(len(src_tokens))

        if self.args.truncate_sequence:
            src_tokens = TruncateDataset(src_tokens, self.args.max_positions)

        dataset = {
            'id': IdDataset(),
            'net_input': {
                'src_tokens': RightPadDataset(
                    src_tokens,
                    pad_idx=self.source_dictionary.pad()),
                'src_lengths': NumelDataset(src_tokens, reduce=False)},
            'nsentences': NumSamplesDataset(),
            'ntokens': NumelDataset(src_tokens, reduce=True),
        }

        if self.args.add_prev_output_tokens:
            prev_tokens_dataset = RightPadDataset(
                RollDataset(src_tokens, 1),
                pad_idx=self.dictionary.pad())
            dataset['net_input'].update(
                prev_output_tokens=prev_tokens_dataset)

        if not self.args.regression_target:
            label_dataset = make_dataset(
                os.path.join(self.args.data, split + '.label'), self.target_dictionary)
            if label_dataset is not None:
                dataset.update(
                    target=OffsetTokensDataset(
                        StripTokenDataset(
                            label_dataset,
                            id_to_strip=self.target_dictionary.eos()),
                        offset=-self.target_dictionary.nspecial,
                    )
                )
        else:
            label_path = os.path.join(self.args.data, split + '.label')
            if os.path.exists(label_path):
                dataset.update(target=RawLabelDataset([
                    float(x.strip()) for x in open(label_path).readlines()]))

        nested_dataset = NestedDictionaryDataset(dataset, sizes=[src_tokens.sizes])

        if self.args.no_shuffle:
            dataset = nested_dataset
        else:
            dataset = SortDataset(
                nested_dataset,
                sort_order=[shuffle])  # shuffle

        print("| Loaded {0} with #samples: {1}".format(split, len(dataset)))

        self.datasets[split] = dataset
        return self.datasets[split]
Exemple #6
0
    def load_dataset(self, split, combine=False, **kwargs):
        """Load a given dataset split (e.g., train, valid, test)."""
        def get_path(type, split):
            return os.path.join(self.args.data, type, split)

        def make_dataset(type, dictionary):
            split_path = get_path(type, split)

            dataset = data_utils.load_indexed_dataset(
                split_path,
                dictionary,
                self.args.dataset_impl,
                combine=combine,
            )
            return dataset

        # input0 is source, input1 is synthetic target, input2 is reference
        input0 = make_dataset(self.args.input0, self.source_dictionary)
        assert input0 is not None, 'could not find dataset: {}'.format(
            get_path(type, split))
        input1 = make_dataset(self.args.input1, self.source_dictionary)

        if self.args.init_token is not None:
            input0 = PrependTokenDataset(input0, self.args.init_token)

        if self.args.input2 is not None:
            input2 = make_dataset(self.args.input2, self.source_dictionary)

        if self.args.input2 is not None and self.add_ref_prob > 0 and split != 'valid':
            input3 = PrependTokenDataset(input2, self.args.separator_token)
        else:
            input3 = None

        if input1 is None:
            src_tokens = input0
        else:
            if self.args.separator_token is not None:
                input1 = PrependTokenDataset(input1, self.args.separator_token)

            if self.args.input2 is not None and self.add_ref_prob > 0. and split != 'valid':
                src_tokens = ConcatSentencesDataset(
                    input0,
                    input3,
                    input1,
                    add_ref_prob=self.add_ref_prob,
                    drop_ref_rate=self.args.dropout_ref,
                    pad_idx=self.source_dictionary.pad(),
                    eos_idx=self.source_dictionary.eos(),
                    bos_idx=self.source_dictionary.bos())
            else:
                src_tokens = ConcatSentencesDataset(input0, input1)

        with data_utils.numpy_seed(self.args.seed):
            shuffle = np.random.permutation(len(src_tokens))

        if self.args.truncate_sequence:
            src_tokens = TruncateDataset(src_tokens, self.args.max_positions)

        if self.args.input2 is not None and self.args.add_tran_loss:
            # create masked input and targets
            mask_whole_words = get_whole_word_mask(self.args, self.source_dictionary) \
                if self.args.mask_whole_words else None
            ref_dataset, ref_target_dataset = MaskTokensDataset.apply_mask(
                input2,
                self.source_dictionary,
                pad_idx=self.source_dictionary.pad(),
                mask_idx=self.mask_idx,
                seed=self.args.seed,
                mask_prob=self.args.mask_prob,
                leave_unmasked_prob=self.args.leave_unmasked_prob,
                random_token_prob=self.args.random_token_prob,
                freq_weighted_replacement=self.args.freq_weighted_replacement,
                mask_whole_words=mask_whole_words,
            )

            if self.args.separator_token is not None:
                input2 = PrependTokenDataset(ref_dataset,
                                             self.args.separator_token)
            parallel_src_tokens = ConcatSentencesDataset(input0, input2)
            if self.args.truncate_sequence:
                parallel_src_tokens = TruncateDataset(parallel_src_tokens,
                                                      self.args.max_positions)

        dataset = {
            'id': IdDataset(),
            'net_input': {
                'src_tokens':
                RightPadDataset(
                    src_tokens,
                    pad_idx=self.source_dictionary.pad(),
                ),
                'src_lengths':
                NumelDataset(src_tokens, reduce=False),
            },
            'nsentences': NumSamplesDataset(),
            'ntokens': NumelDataset(src_tokens, reduce=True),
        }

        if self.args.input2 is not None and self.args.add_tran_loss:
            dataset['net_input']['parallel_src_tokens'] = RightPadDataset(
                parallel_src_tokens,
                pad_idx=self.source_dictionary.pad(),
            )

        if self.args.add_prev_output_tokens:
            prev_tokens_dataset = RightPadDataset(
                RollDataset(src_tokens, 1),
                pad_idx=self.dictionary.pad(),
            )
            dataset['net_input'].update(
                prev_output_tokens=prev_tokens_dataset, )

        if not self.args.regression_target:
            label_dataset = make_dataset('label', self.label_dictionary)
            if label_dataset is not None:
                dataset.update(target=OffsetTokensDataset(
                    StripTokenDataset(
                        label_dataset,
                        id_to_strip=self.label_dictionary.eos(),
                    ),
                    offset=-self.label_dictionary.nspecial,
                ))
            if self.args.input2 is not None and self.args.add_tran_loss:
                # used as translation target when calculating loss
                dataset.update(parallel_target=RightPadDataset(
                    ref_target_dataset,
                    pad_idx=self.source_dictionary.pad(),
                ))
        else:
            label_path = "{0}.label".format(get_path('label', split))
            if os.path.exists(label_path):

                def parse_regression_target(i, line):
                    values = line.split()
                    assert len(values) == self.args.num_classes, \
                        f'expected num_classes={self.args.num_classes} regression target values on line {i}, found: "{line}"'
                    return [float(x) for x in values]

                dataset.update(target=RawLabelDataset([
                    parse_regression_target(i, line.strip())
                    for i, line in enumerate(open(label_path).readlines())
                ]))

        nested_dataset = NestedDictionaryDataset(
            dataset,
            sizes=[src_tokens.sizes],
            all_sizes=src_tokens.all_sizes
            if self.args.add_target_num_tokens else None,
            padding_idx=self.source_dictionary.pad(),
            add_ref_prob=self.add_ref_prob if split != 'valid' else 0.,
        )

        if self.args.no_shuffle:
            dataset = nested_dataset
        else:
            dataset = SortDataset(
                nested_dataset,
                # shuffle
                sort_order=[shuffle],
            )

        logger.info("Loaded {0} with #samples: {1}".format(
            split, len(dataset)))

        self.datasets[split] = dataset
        return self.datasets[split]