def indexed_dataset(path, dictionary): if self.args.raw_text: tokenizer_tool = tokenizer.build_tokenizer(self.args) return IndexedRawTextDataset(tokenizer_tool, path, dictionary) elif IndexedInMemoryDataset.exists(path): return IndexedInMemoryDataset(path, fix_lua_indexing=True) return None
def main(): parser = argparse.ArgumentParser( description='Command-line script for BLEU scoring.') parser.add_argument('-s', '--sys', default='-', help='system output') parser.add_argument('-r', '--ref', required=True, help='references') parser.add_argument('-o', '--order', default=4, metavar='N', type=int, help='consider ngrams up to this order') parser.add_argument('--ignore-case', action='store_true', help='case-insensitive scoring') parser.add_argument( '--tokenizer_name', metavar='N', default='default', choices=['default', 'nltk', 'sacremoses'], help= "Which tokenizer to use. Choices are default, nltk, sacremoses. default tokenizes by splitting on white space. nltk uses " "nltk's word_tokenize which better takes into account punctuation. As an example " "'Hello, how's your day today?' would be tokenized as " "['Hello,' , 'how's', 'your', 'day', 'today?'] when using the default, but would instead be tokenized as " "['Hello', ',', 'how', ''s', 'your', 'day', 'today', '?'] when using nltk. The sacremoses tokenizer is from this package, " "https://github.com/alvations/sacremoses.") args = parser.parse_args() print(args) assert args.sys == '-' or os.path.exists(args.sys), \ "System output file {} does not exist".format(args.sys) assert os.path.exists(args.ref), \ "Reference file {} does not exist".format(args.ref) dict = dictionary.Dictionary() tokenizer_tool = tokenizer.build_tokenizer(args) def readlines(fd): for line in fd.readlines(): if args.ignore_case: yield line.lower() yield line def score(fdsys): with open(args.ref) as fdref: scorer = bleu.Scorer(dict.pad(), dict.eos(), dict.unk()) for sys_tok, ref_tok in zip(readlines(fdsys), readlines(fdref)): sys_tok = tokenizer_tool.tokenize(sys_tok, dict) ref_tok = tokenizer_tool.tokenize(ref_tok, dict) scorer.add(ref_tok, sys_tok) print(scorer.result_string(args.order)) if args.sys == '-': score(sys.stdin) else: with open(args.sys, 'r') as f: score(f)
def main(args): assert args.path is not None, '--path required for generation!' assert not args.sampling or args.nbest == args.beam, \ '--sampling requires --nbest to be equal to --beam' assert args.replace_unk is None or args.raw_text, \ '--replace-unk requires a raw text dataset (--raw-text)' if args.max_tokens is None and args.max_sentences is None: args.max_tokens = 12000 print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) task.load_dataset(args.gen_subset) print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset)))) # Set dictionaries src_dict = task.source_dictionary tgt_dict = task.target_dictionary # Build tokenizer tokenizer_tool = tokenizer.build_tokenizer(args) # Load ensemble print('| loading model(s) from {}'.format(args.path)) models, _ = utils.load_ensemble_for_inference(args.path.split(':'), task, model_arg_overrides=eval( args.model_overrides)) # Optimize ensemble for generation for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) # Load dataset (possibly sharded) itr = data.EpochBatchIterator( dataset=task.dataset(args.gen_subset), max_tokens=args.max_tokens, max_sentences=args.max_sentences, max_positions=models[0].max_positions(), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=8, num_shards=args.num_shards, shard_id=args.shard_id, ).next_epoch_itr(shuffle=False) # Initialize generator gen_timer = StopwatchMeter() if args.score_reference: translator = SequenceScorer(models, task.target_dictionary) else: translator = SequenceGenerator( models, task.target_dictionary, beam_size=args.beam, stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized), len_penalty=args.lenpen, unk_penalty=args.unkpen, sampling=args.sampling, sampling_topk=args.sampling_topk, minlen=args.min_len, ) if use_cuda: translator.cuda() # Generate and compute BLEU score scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk()) num_sentences = 0 has_target = True with progress_bar.build_progress_bar(args, itr) as t: if args.score_reference: translations = translator.score_batched_itr(t, cuda=use_cuda, timer=gen_timer) else: translations = translator.generate_batched_itr( t, maxlen_a=args.max_len_a, maxlen_b=args.max_len_b, cuda=use_cuda, timer=gen_timer, prefix_size=args.prefix_size, ) wps_meter = TimeMeter() for sample_id, src_tokens, target_tokens, hypos in translations: # Process input and ground truth has_target = target_tokens is not None target_tokens = target_tokens.int().cpu() if has_target else None # Either retrieve the original sentences or regenerate them from tokens. if align_dict is not None: src_str = task.dataset( args.gen_subset).src.get_original_text(sample_id) target_str = task.dataset( args.gen_subset).tgt.get_original_text(sample_id) else: src_str = src_dict.string(src_tokens, args.remove_bpe) if has_target: target_str = tgt_dict.string(target_tokens, args.remove_bpe, escape_unk=True) if not args.quiet: print('S-{}\t{}'.format(sample_id, src_str)) if has_target: print('T-{}\t{}'.format(sample_id, target_str)) # Process top predictions for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]): hypo_tokens, hypo_str, alignment = utils.post_process_prediction( tokenizer_tool=tokenizer_tool, hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None, align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, ) if not args.quiet: print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str)) print('P-{}\t{}'.format( sample_id, ' '.join( map( lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist(), )))) if args.print_alignment: print('A-{}\t{}'.format( sample_id, ' '.join( map(lambda x: str(utils.item(x)), alignment)))) # Score only the top hypothesis if has_target and i == 0: if align_dict is not None or args.remove_bpe is not None: # Convert back to tokens for evaluation with unk replacement and/or without BPE target_tokens = tokenizer_tool.tokenize( target_str, tgt_dict, add_if_not_exist=True) scorer.add(target_tokens, hypo_tokens) wps_meter.update(src_tokens.size(0)) t.log({'wps': round(wps_meter.avg)}) num_sentences += 1 print( '| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)' .format(num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg)) if has_target: print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
def main(args): print(args) os.makedirs(args.destdir, exist_ok=True) target = not args.only_source source_tokenizer = build_tokenizer(args, args.max_source_length) target_tokenizer = build_tokenizer(args, args.max_target_length) def build_dictionary(tokenizer, filenames, max_length=None): d = dictionary.Dictionary() for filename in filenames: tokenizer.add_file_to_dictionary(filename, d) return d def train_path(lang): return '{}{}'.format(args.trainpref, ('.' + lang) if lang else '') def file_name(prefix, lang): fname = prefix if lang is not None: fname += f'.{lang}' return fname def dest_path(prefix, lang): return os.path.join(args.destdir, file_name(prefix, lang)) def dict_path(lang): return dest_path('dict', lang) + '.txt' def dataset_dest_path(output_prefix, lang, extension): base = f'{args.destdir}/{output_prefix}' lang_part = f'.{args.source_lang}-{args.target_lang}.{lang}' if lang is not None else '' return f'{base}{lang_part}.{extension}' if args.joined_dictionary: assert not args.srcdict, 'cannot combine --srcdict and --joined-dictionary' assert not args.tgtdict, 'cannot combine --tgtdict and --joined-dictionary' if args.max_source_length is None or args.max_target_length is None: tokenizer = source_tokenizer elif args.max_source_length > args.max_target_length: tokenizer = source_tokenizer else: tokenizer = target_tokenizer src_dict = build_dictionary( tokenizer, set([ train_path(lang) for lang in [args.source_lang, args.target_lang] ])) tgt_dict = src_dict else: if args.srcdict: src_dict = dictionary.Dictionary.load(args.srcdict) else: assert args.trainpref, "--trainpref must be set if --srcdict is not specified" src_dict = build_dictionary(source_tokenizer, [train_path(args.source_lang)]) if target: if args.tgtdict: tgt_dict = dictionary.Dictionary.load(args.tgtdict) else: assert args.trainpref, "--trainpref must be set if --tgtdict is not specified" tgt_dict = build_dictionary(target_tokenizer, [train_path(args.target_lang)]) src_dict.finalize( threshold=args.thresholdsrc, nwords=args.nwordssrc, padding_factor=args.padding_factor, ) src_dict.save(dict_path(args.source_lang)) if target: if not args.joined_dictionary: tgt_dict.finalize( threshold=args.thresholdtgt, nwords=args.nwordstgt, padding_factor=args.padding_factor, ) tgt_dict.save(dict_path(args.target_lang)) def make_binary_dataset(tokenizer, input_prefix, output_prefix, lang): dict = dictionary.Dictionary.load(dict_path(lang)) print('| [{}] Dictionary: {} types'.format(lang, len(dict) - 1)) ds = indexed_dataset.IndexedDatasetBuilder( dataset_dest_path(output_prefix, lang, 'bin')) def consumer(tensor): ds.add_item(tensor) input_file = '{}{}'.format(input_prefix, ('.' + lang) if lang is not None else '') res = tokenizer.binarize(input_file, dict, consumer) print('| [{}] {}: {} sents, {} tokens, {:.3}% replaced by {}'.format( lang, input_file, res['nseq'], res['ntok'], 100 * res['nunk'] / res['ntok'], dict.unk_word)) ds.finalize(dataset_dest_path(output_prefix, lang, 'idx')) def make_dataset(tokenizer, input_prefix, output_prefix, lang): if args.output_format == 'binary': make_binary_dataset(tokenizer, input_prefix, output_prefix, lang) elif args.output_format == 'raw': # Copy original text file to destination folder output_text_file = dest_path( output_prefix + '.{}-{}'.format(args.source_lang, args.target_lang), lang, ) shutil.copyfile(file_name(input_prefix, lang), output_text_file) def make_all(tokenizer, lang): if args.trainpref: make_dataset(tokenizer, args.trainpref, 'train', lang) if args.validpref: for k, validpref in enumerate(args.validpref.split(',')): outprefix = 'valid{}'.format(k) if k > 0 else 'valid' make_dataset(tokenizer, validpref, outprefix, lang) if args.testpref: for k, testpref in enumerate(args.testpref.split(',')): outprefix = 'test{}'.format(k) if k > 0 else 'test' make_dataset(tokenizer, testpref, outprefix, lang) make_all(source_tokenizer, args.source_lang) if target: make_all(target_tokenizer, args.target_lang) print('| Wrote preprocessed data to {}'.format(args.destdir)) if args.alignfile: assert args.trainpref, "--trainpref must be set if --alignfile is specified" src_file_name = train_path(args.source_lang) tgt_file_name = train_path(args.target_lang) src_dict = dictionary.Dictionary.load(dict_path(args.source_lang)) tgt_dict = dictionary.Dictionary.load(dict_path(args.target_lang)) freq_map = {} with open(args.alignfile, 'r') as align_file: with open(src_file_name, 'r') as src_file: with open(tgt_file_name, 'r') as tgt_file: for a, s, t in zip_longest(align_file, src_file, tgt_file): si = source_tokenizer.tokenize(s, src_dict, add_if_not_exist=False) ti = target_tokenizer.tokenize(t, tgt_dict, add_if_not_exist=False) ai = list(map(lambda x: tuple(x.split('-')), a.split())) for sai, tai in ai: srcidx = si[int(sai)] tgtidx = ti[int(tai)] if srcidx != src_dict.unk( ) and tgtidx != tgt_dict.unk(): assert srcidx != src_dict.pad() assert srcidx != src_dict.eos() assert tgtidx != tgt_dict.pad() assert tgtidx != tgt_dict.eos() if srcidx not in freq_map: freq_map[srcidx] = {} if tgtidx not in freq_map[srcidx]: freq_map[srcidx][tgtidx] = 1 else: freq_map[srcidx][tgtidx] += 1 align_dict = {} for srcidx in freq_map.keys(): align_dict[srcidx] = max(freq_map[srcidx], key=freq_map[srcidx].get) with open( os.path.join( args.destdir, 'alignment.{}-{}.txt'.format(args.source_lang, args.target_lang)), 'w') as f: for k, v in align_dict.items(): print('{} {}'.format(src_dict[k], tgt_dict[v]), file=f)
def main(args): if args.buffer_size < 1: args.buffer_size = 1 if args.max_tokens is None and args.max_sentences is None: args.max_sentences = 1 assert not args.sampling or args.nbest == args.beam, \ '--sampling requires --nbest to be equal to --beam' assert not args.max_sentences or args.max_sentences <= args.buffer_size, \ '--max-sentences/--batch-size cannot be larger than --buffer-size' print(args) use_cuda = torch.cuda.is_available() and not args.cpu # Setup task, e.g., translation task = tasks.setup_task(args) # Load ensemble print('| loading model(s) from {}'.format(args.path)) model_paths = args.path.split(':') models, model_args = utils.load_ensemble_for_inference( model_paths, task, model_arg_overrides=eval(args.model_overrides)) # Set dictionaries src_dict = task.source_dictionary tgt_dict = task.target_dictionary # Build tokenizer tokenizer_tool = tokenizer.build_tokenizer(args) # Optimize ensemble for generation for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() # Initialize generator translator = SequenceGenerator( models, tgt_dict, beam_size=args.beam, stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized), len_penalty=args.lenpen, unk_penalty=args.unkpen, sampling=args.sampling, sampling_topk=args.sampling_topk, minlen=args.min_len, sampling_temperature=args.sampling_temperature) if use_cuda: translator.cuda() # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(args.replace_unk) def make_result(src_str, hypos): result = Translation( src_str='O\t{}'.format(src_str), hypos=[], pos_scores=[], alignments=[], ) # Process top predictions for hypo in hypos[:min(len(hypos), args.nbest)]: hypo_tokens, hypo_str, alignment = utils.post_process_prediction( tokenizer_tool=tokenizer_tool, hypo_tokens=hypo['tokens'].int().cpu(), src_str=src_str, alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None, align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=args.remove_bpe, ) result.hypos.append('H\t{}\t{}'.format(hypo['score'], hypo_str)) result.pos_scores.append('P\t{}'.format(' '.join( map( lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist(), )))) result.alignments.append('A\t{}'.format(' '.join( map(lambda x: str(utils.item(x)), alignment))) if args. print_alignment else None) return result def process_batch(batch): tokens = batch.tokens lengths = batch.lengths if use_cuda: tokens = tokens.cuda() lengths = lengths.cuda() translations = translator.generate( tokens, lengths, maxlen=int(args.max_len_a * tokens.size(1) + args.max_len_b), ) return [ make_result(batch.srcs[i], t) for i, t in enumerate(translations) ] if args.buffer_size > 1: print('| Sentence buffer size:', args.buffer_size) print('| Type the input sentence and press return:') for inputs in buffered_read(args.buffer_size): indices = [] results = [] for batch, batch_indices in make_batches(tokenizer_tool, inputs, args, src_dict, models[0].max_positions()): indices.extend(batch_indices) results += process_batch(batch) for i in np.argsort(indices): result = results[i] print(result.src_str) for hypo, pos_scores, align in zip(result.hypos, result.pos_scores, result.alignments): print(hypo) print(pos_scores) if align is not None: print(align)