Exemple #1
0
    def __init__(self, args, no_encoder_attn=False, kernel_size=0):
        super().__init__()
        self.embed_dim = args.decoder_embed_dim
        self.conv_dim = args.decoder_conv_dim
        if args.decoder_glu:
            self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim)
            self.act = nn.GLU()
        else:
            self.linear1 = Linear(self.embed_dim, self.conv_dim)
            self.act = None
        if args.decoder_conv_type == "lightweight":
            self.conv = LightweightConv(
                self.conv_dim,
                kernel_size,
                padding_l=kernel_size - 1,
                weight_softmax=args.weight_softmax,
                num_heads=args.decoder_attention_heads,
                weight_dropout=args.weight_dropout,
            )
        elif args.decoder_conv_type == "dynamic":
            self.conv = DynamicConv(
                self.conv_dim,
                kernel_size,
                padding_l=kernel_size - 1,
                weight_softmax=args.weight_softmax,
                num_heads=args.decoder_attention_heads,
                weight_dropout=args.weight_dropout,
            )
        else:
            raise NotImplementedError
        self.linear2 = Linear(self.conv_dim, self.embed_dim)

        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__)
        self.relu_dropout_module = FairseqDropout(
            args.relu_dropout, module_name=self.__class__.__name__)
        self.input_dropout_module = FairseqDropout(
            args.input_dropout, module_name=self.__class__.__name__)
        self.normalize_before = args.decoder_normalize_before

        self.conv_layer_norm = LayerNorm(self.embed_dim)

        if no_encoder_attn:
            self.encoder_attn = None
            self.encoder_attn_layer_norm = None
        else:
            self.encoder_attn = MultiheadAttention(
                self.embed_dim,
                args.decoder_attention_heads,
                dropout=args.attention_dropout,
                encoder_decoder_attention=True,
            )
            self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)

        self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim)
        self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim)

        self.final_layer_norm = LayerNorm(self.embed_dim)
        self.need_attn = True
Exemple #2
0
    def __init__(self,
                 args,
                 no_encoder_attn=False,
                 add_bias_kv=False,
                 add_zero_attn=False):
        super().__init__()
        self.embed_dim = args.decoder_embed_dim
        self.self_attn = MultiheadAttention(
            embed_dim=self.embed_dim,
            num_heads=args.decoder_attention_heads,
            dropout=args.attention_dropout,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
            self_attention=True,
        )
        self.dropout = args.dropout
        self.activation_fn = utils.get_activation_fn(
            activation=getattr(args, "activation_fn", "relu"))
        self.activation_dropout = getattr(args, "activation_dropout", 0)
        if self.activation_dropout == 0:
            # for backwards compatibility with models that use args.relu_dropout
            self.activation_dropout = getattr(args, "relu_dropout", 0)
        self.normalize_before = args.decoder_normalize_before

        # use layerNorm rather than FusedLayerNorm for exporting.
        # char_inputs can be used to determint this.
        # TODO  remove this once we update apex with the fix
        export = getattr(args, "char_inputs", False)
        self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export)

        if no_encoder_attn:
            self.encoder_attn = None
            self.encoder_attn_layer_norm = None
        else:
            self.encoder_attn = MultiheadAttention(
                self.embed_dim,
                args.decoder_attention_heads,
                kdim=getattr(args, "encoder_embed_dim", None),
                vdim=getattr(args, "encoder_embed_dim", None),
                dropout=args.attention_dropout,
                encoder_decoder_attention=True,
            )
            self.encoder_attn_layer_norm = LayerNorm(self.embed_dim,
                                                     export=export)

        self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim)
        self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim)

        self.final_layer_norm = LayerNorm(self.embed_dim, export=export)
        self.need_attn = True

        self.onnx_trace = False
 def build_self_attention(self, embed_dim, args):
     return MultiheadAttention(
         embed_dim,
         args.encoder_attention_heads,
         dropout=args.attention_dropout,
         self_attention=True,
         q_noise=self.quant_noise,
         qn_block_size=self.quant_noise_block_size,
     )
 def build_encoder_attention(self, embed_dim, args):
     return MultiheadAttention(
         embed_dim,
         args.decoder_attention_heads,
         kdim=getattr(args, "encoder_embed_dim", None),
         vdim=getattr(args, "encoder_embed_dim", None),
         dropout=args.attention_dropout,
         encoder_decoder_attention=True,
         q_noise=self.quant_noise,
         qn_block_size=self.quant_noise_block_size,
     )
 def build_self_attention(self,
                          embed_dim,
                          args,
                          add_bias_kv=False,
                          add_zero_attn=False):
     return MultiheadAttention(
         embed_dim,
         args.decoder_attention_heads,
         dropout=args.attention_dropout,
         add_bias_kv=add_bias_kv,
         add_zero_attn=add_zero_attn,
         self_attention=not getattr(args, "cross_self_attention", False),
         q_noise=self.quant_noise,
         qn_block_size=self.quant_noise_block_size,
     )
 def build_self_attention(
     self,
     embed_dim,
     num_attention_heads,
     dropout,
     self_attention,
     q_noise,
     qn_block_size,
 ):
     return MultiheadAttention(
         embed_dim,
         num_attention_heads,
         dropout=dropout,
         self_attention=True,
         q_noise=q_noise,
         qn_block_size=qn_block_size,
     )
Exemple #7
0
 def __init__(self, args):
     super().__init__()
     self.embed_dim = args.encoder_embed_dim
     self.self_attn = MultiheadAttention(
         self.embed_dim,
         args.encoder_attention_heads,
         dropout=args.attention_dropout,
         self_attention=True,
     )
     self.self_attn_layer_norm = LayerNorm(self.embed_dim)
     self.dropout = args.dropout
     self.activation_fn = utils.get_activation_fn(
         activation=getattr(args, "activation_fn", "relu"))
     self.activation_dropout = getattr(args, "activation_dropout", 0)
     if self.activation_dropout == 0:
         # for backwards compatibility with models that use args.relu_dropout
         self.activation_dropout = getattr(args, "relu_dropout", 0)
     self.normalize_before = args.encoder_normalize_before
     self.fc1 = Linear(self.embed_dim, args.encoder_ffn_embed_dim)
     self.fc2 = Linear(args.encoder_ffn_embed_dim, self.embed_dim)
     self.final_layer_norm = LayerNorm(self.embed_dim)
Exemple #8
0
    def __init__(
        self,
        embedding_dim: float = 768,
        ffn_embedding_dim: float = 3072,
        num_attention_heads: float = 8,
        dropout: float = 0.1,
        attention_dropout: float = 0.1,
        activation_dropout: float = 0.1,
        activation_fn: str = "relu",
        layer_norm_first: bool = False,
    ) -> None:

        super().__init__()
        # Initialize parameters
        self.embedding_dim = embedding_dim
        self.dropout = dropout
        self.activation_dropout = activation_dropout

        # Initialize blocks
        self.activation_fn = utils.get_activation_fn(activation_fn)
        self.self_attn = MultiheadAttention(
            self.embedding_dim,
            num_attention_heads,
            dropout=attention_dropout,
            self_attention=True,
        )

        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(self.activation_dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.layer_norm_first = layer_norm_first

        # layer norm associated with the self attention layer
        self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
        self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
        self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)

        # layer norm associated with the position wise feed-forward NN
        self.final_layer_norm = LayerNorm(self.embedding_dim)
Exemple #9
0
class TransformerDecoderLayer(nn.Module):
    """Decoder layer block.

    In the original paper each operation (multi-head attention, encoder
    attention or FFN) is postprocessed with: `dropout -> add residual ->
    layernorm`. In the tensor2tensor code they suggest that learning is more
    robust when preprocessing each layer with layernorm and postprocessing with:
    `dropout -> add residual`. We default to the approach in the paper, but the
    tensor2tensor approach can be enabled by setting
    *args.decoder_normalize_before* to ``True``.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        no_encoder_attn (bool, optional): whether to attend to encoder outputs
            (default: False).
    """
    def __init__(self,
                 args,
                 no_encoder_attn=False,
                 add_bias_kv=False,
                 add_zero_attn=False):
        super().__init__()
        self.embed_dim = args.decoder_embed_dim
        self.self_attn = MultiheadAttention(
            embed_dim=self.embed_dim,
            num_heads=args.decoder_attention_heads,
            dropout=args.attention_dropout,
            add_bias_kv=add_bias_kv,
            add_zero_attn=add_zero_attn,
            self_attention=True,
        )
        self.dropout = args.dropout
        self.activation_fn = utils.get_activation_fn(
            activation=getattr(args, "activation_fn", "relu"))
        self.activation_dropout = getattr(args, "activation_dropout", 0)
        if self.activation_dropout == 0:
            # for backwards compatibility with models that use args.relu_dropout
            self.activation_dropout = getattr(args, "relu_dropout", 0)
        self.normalize_before = args.decoder_normalize_before

        # use layerNorm rather than FusedLayerNorm for exporting.
        # char_inputs can be used to determint this.
        # TODO  remove this once we update apex with the fix
        export = getattr(args, "char_inputs", False)
        self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export)

        if no_encoder_attn:
            self.encoder_attn = None
            self.encoder_attn_layer_norm = None
        else:
            self.encoder_attn = MultiheadAttention(
                self.embed_dim,
                args.decoder_attention_heads,
                kdim=getattr(args, "encoder_embed_dim", None),
                vdim=getattr(args, "encoder_embed_dim", None),
                dropout=args.attention_dropout,
                encoder_decoder_attention=True,
            )
            self.encoder_attn_layer_norm = LayerNorm(self.embed_dim,
                                                     export=export)

        self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim)
        self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim)

        self.final_layer_norm = LayerNorm(self.embed_dim, export=export)
        self.need_attn = True

        self.onnx_trace = False

    def prepare_for_onnx_export_(self):
        self.onnx_trace = True

    def forward(self, input):
        """
        Args:
            input (Tuple):
                input[0] (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
                input[1] (Tensor): encoder output of shape `(batch, src_len, embed_dim)`
                input[2] (ByteTensor/FloatTensor): encoder padding mask -
                    binary ByteTensor of shape `(batch, src_len)` where padding elements
                    are indicated by ``1``.
        Returns:
            output (Tuple):
                output[0] (Tensor): encoded output of shape `(batch, src_len, embed_dim)`
                output[1] (ByteTensor/FloatTensor): encoder padding mask
                output[2] (LongTensor): previous decoder outputs
        """
        # Note: incremental state is not yet supported
        mt_task = False
        if isinstance(input, tuple):
            x = input[0]
            encoder_out = input[1]
            encoder_padding_mask = input[2]
            incremental_state = None
            mt_task = True
        else:
            x = input
            encoder_out = None
            encoder_padding_mask = None
            incremental_state = None

        if incremental_state is None:
            self_attn_mask = self.buffered_future_mask(x)
        else:
            self_attn_mask = None

        # TODO: add back prev_self_attn_state, prev_attn_state,
        # self_attn_padding_mask
        prev_self_attn_state = None
        prev_attn_state = None
        self_attn_padding_mask = None

        residual = x
        x = self.maybe_layer_norm(self.self_attn_layer_norm, x, before=True)
        if prev_self_attn_state is not None:
            if incremental_state is None:
                incremental_state = {}
            prev_key, prev_value = prev_self_attn_state
            saved_state = {"prev_key": prev_key, "prev_value": prev_value}
            self.self_attn._set_input_buffer(incremental_state, saved_state)
        x, attn = self.self_attn(
            query=x,
            key=x,
            value=x,
            key_padding_mask=self_attn_padding_mask,
            incremental_state=incremental_state,
            need_weights=False,
            attn_mask=self_attn_mask,
        )
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.maybe_layer_norm(self.self_attn_layer_norm, x, after=True)

        if self.encoder_attn is not None:
            residual = x
            x = self.maybe_layer_norm(self.encoder_attn_layer_norm,
                                      x,
                                      before=True)
            if prev_attn_state is not None:
                if incremental_state is None:
                    incremental_state = {}
                prev_key, prev_value = prev_attn_state
                saved_state = {"prev_key": prev_key, "prev_value": prev_value}
                self.encoder_attn._set_input_buffer(incremental_state,
                                                    saved_state)
            x, attn = self.encoder_attn(
                query=x,
                key=encoder_out,
                value=encoder_out,
                key_padding_mask=encoder_padding_mask,
                incremental_state=incremental_state,
                static_kv=True,
                need_weights=(not self.training and self.need_attn),
            )
            x = F.dropout(x, p=self.dropout, training=self.training)
            x = residual + x
            x = self.maybe_layer_norm(self.encoder_attn_layer_norm,
                                      x,
                                      after=True)

        residual = x
        x = self.maybe_layer_norm(self.final_layer_norm, x, before=True)
        x = self.activation_fn(self.fc1(x))
        x = F.dropout(x, p=self.activation_dropout, training=self.training)
        x = self.fc2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        x = residual + x
        x = self.maybe_layer_norm(self.final_layer_norm, x, after=True)

        if mt_task:
            return (x, encoder_out, encoder_padding_mask)
        return x

    def buffered_future_mask(self, tensor):
        dim = tensor.size(0)
        if (not hasattr(self, "_future_mask") or self._future_mask is None
                or self._future_mask.device != tensor.device):
            self._future_mask = torch.triu(
                utils.fill_with_neg_inf(tensor.new(dim, dim)), 1)
        if self._future_mask.size(0) < dim:
            self._future_mask = torch.triu(
                utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)),
                1)
        return self._future_mask[:dim, :dim]

    def maybe_layer_norm(self, layer_norm, x, before=False, after=False):
        assert before ^ after
        if after ^ self.normalize_before:
            return layer_norm(x)
        else:
            return x

    def make_generation_fast_(self, need_attn=False, **kwargs):
        self.need_attn = need_attn
Exemple #10
0
class LightConvDecoderLayer(nn.Module):
    """Decoder layer block.

    Args:
        args (argparse.Namespace): parsed command-line arguments
        no_encoder_attn (bool, optional): whether to attend to encoder outputs.
            Default: ``False``
        kernel_size: kernel size of the convolution
    """
    def __init__(self, args, no_encoder_attn=False, kernel_size=0):
        super().__init__()
        self.embed_dim = args.decoder_embed_dim
        self.conv_dim = args.decoder_conv_dim
        if args.decoder_glu:
            self.linear1 = Linear(self.embed_dim, 2 * self.conv_dim)
            self.act = nn.GLU()
        else:
            self.linear1 = Linear(self.embed_dim, self.conv_dim)
            self.act = None
        if args.decoder_conv_type == "lightweight":
            self.conv = LightweightConv(
                self.conv_dim,
                kernel_size,
                padding_l=kernel_size - 1,
                weight_softmax=args.weight_softmax,
                num_heads=args.decoder_attention_heads,
                weight_dropout=args.weight_dropout,
            )
        elif args.decoder_conv_type == "dynamic":
            self.conv = DynamicConv(
                self.conv_dim,
                kernel_size,
                padding_l=kernel_size - 1,
                weight_softmax=args.weight_softmax,
                num_heads=args.decoder_attention_heads,
                weight_dropout=args.weight_dropout,
            )
        else:
            raise NotImplementedError
        self.linear2 = Linear(self.conv_dim, self.embed_dim)

        self.dropout_module = FairseqDropout(
            args.dropout, module_name=self.__class__.__name__)
        self.relu_dropout_module = FairseqDropout(
            args.relu_dropout, module_name=self.__class__.__name__)
        self.input_dropout_module = FairseqDropout(
            args.input_dropout, module_name=self.__class__.__name__)
        self.normalize_before = args.decoder_normalize_before

        self.conv_layer_norm = LayerNorm(self.embed_dim)

        if no_encoder_attn:
            self.encoder_attn = None
            self.encoder_attn_layer_norm = None
        else:
            self.encoder_attn = MultiheadAttention(
                self.embed_dim,
                args.decoder_attention_heads,
                dropout=args.attention_dropout,
                encoder_decoder_attention=True,
            )
            self.encoder_attn_layer_norm = LayerNorm(self.embed_dim)

        self.fc1 = Linear(self.embed_dim, args.decoder_ffn_embed_dim)
        self.fc2 = Linear(args.decoder_ffn_embed_dim, self.embed_dim)

        self.final_layer_norm = LayerNorm(self.embed_dim)
        self.need_attn = True

    def forward(
        self,
        x,
        encoder_out,
        encoder_padding_mask,
        incremental_state,
        prev_conv_state=None,
        prev_attn_state=None,
        conv_mask=None,
        conv_padding_mask=None,
    ):
        """
        Args:
            x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)`
            encoder_padding_mask (ByteTensor): binary ByteTensor of shape
                `(batch, src_len)` where padding elements are indicated by ``1``.

        Returns:
            encoded output of shape `(batch, src_len, embed_dim)`
        """
        residual = x
        x = self.maybe_layer_norm(self.conv_layer_norm, x, before=True)
        if prev_conv_state is not None:
            if incremental_state is None:
                incremental_state = {}
            self.conv._set_input_buffer(incremental_state, prev_conv_state)
        x = self.input_dropout_module(x)
        x = self.linear1(x)
        if self.act is not None:
            x = self.act(x)
        x = self.conv(x, incremental_state=incremental_state)
        x = self.linear2(x)
        x = self.dropout_module(x)
        x = residual + x
        x = self.maybe_layer_norm(self.conv_layer_norm, x, after=True)

        attn = None
        if self.encoder_attn is not None:
            residual = x
            x = self.maybe_layer_norm(self.encoder_attn_layer_norm,
                                      x,
                                      before=True)
            if prev_attn_state is not None:
                if incremental_state is None:
                    incremental_state = {}
                prev_key, prev_value = prev_attn_state
                saved_state = {"prev_key": prev_key, "prev_value": prev_value}
                self.encoder_attn._set_input_buffer(incremental_state,
                                                    saved_state)
            x, attn = self.encoder_attn(
                query=x,
                key=encoder_out,
                value=encoder_out,
                key_padding_mask=encoder_padding_mask,
                incremental_state=incremental_state,
                static_kv=True,
                need_weights=(not self.training and self.need_attn),
            )
            x = self.dropout_module(x)
            x = residual + x
            x = self.maybe_layer_norm(self.encoder_attn_layer_norm,
                                      x,
                                      after=True)

        residual = x
        x = self.maybe_layer_norm(self.final_layer_norm, x, before=True)
        x = F.relu(self.fc1(x))
        x = self.relu_dropout_module(x)
        x = self.fc2(x)
        x = self.dropout_module(x)
        x = residual + x
        x = self.maybe_layer_norm(self.final_layer_norm, x, after=True)
        return x, attn

    def maybe_layer_norm(self, layer_norm, x, before=False, after=False):
        assert before ^ after
        if after ^ self.normalize_before:
            return layer_norm(x)
        else:
            return x

    def make_generation_fast_(self, need_attn=False, **kwargs):
        self.need_attn = need_attn

    def extra_repr(self):
        return (
            "dropout={}, relu_dropout={}, input_dropout={}, normalize_before={}"
            .format(
                self.dropout_module.p,
                self.relu_dropout_module.p,
                self.input_dropout_module.p,
                self.normalize_before,
            ))