def create_segmentation_dataset(images_folder,
                                target_labels,
                                color_palette,
                                n_images,
                                batch_size=10,
                                split="train"):
    try:
        # creating dataset
        dataset = Coco(
            version=2017,  # versions 5 and 6 supported
            split=split,
            task="segmentation",
            labels=list(target_labels.keys()),  # target labels
            n_images=n_images,  # number of images by class
            batch_size=batch_size  # batch images size
        )
        print(len(dataset))  # size of dataset
        data_folder = Path(images_folder)
        data_folder.mkdir(exist_ok=True)
        FileUtil.clear_folder(data_folder)
        # Download images
        for i, batch_images in enumerate(dataset):
            print(f"download done for batch {i+1} of {dataset.batches_count}")
            for image in batch_images:
                image.export(data_folder, labels_map,
                             color_palette)  # copy images to disk
    except Exception as ex:
        print(f"[ERROR] Error creating the dataset {ex}")
Exemple #2
0
 def _load_dataset(self):
     img_files = FileUtil.get_files(self._images_folder, [".jpg", ".jpeg"])
     xml_files = FileUtil.get_files(self._xml_folder, [".xml"])
     mask_files = FileUtil.get_files(self._xml_folder, [".png"])
     files = img_files + xml_files + mask_files
     files = sorted(files, key=lambda img: img.stem)
     images_files = []
     for img_name, img_files in itertools.groupby(files, key=lambda img: img.stem):
         img_file, xml_file, mask_file = None, None, None
         for file in img_files:
             if file.suffix in [".jpg", ".jpeg"]:
                 img_file = file
             elif file.suffix == ".xml":
                 xml_file = file
             elif file.suffix == ".png":
                 mask_file = file
         if img_file and xml_file:
             images_files.append(PascalVOCImage(
                 img_path=img_file,
                 xml_Path=xml_file,
                 mask_Path=mask_file
             ))
     self._dataset.load(images_files, batch_size=200)
     assert not self._dataset.empty, "Not images found at the folder {}".format(self._images_folder)
     # generate labels map if is not provided
     if self._labels_map is None:
         labels = set()
         for img in self._dataset:
             if img.annotations:
                 for bounding_box in img.annotations["object"]:
                     labels.add(bounding_box["name"].strip().title())
         self._labels_map = {l: i + 1 for i, l in enumerate(labels)}
     # update number of classes
     getattr(self.pipeline.model, self.arch).num_classes = len(self._labels_map)
Exemple #3
0
    def train(self,
              epochs=100,
              val_split=0.3,
              clear_folder=False,
              override_pipeline=False,
              eval=False):
        try:

            if clear_folder:
                FileUtil.clear_folder(self._out_folder)
            self.num_steps = epochs
            self._mk_labels_map()
            self._mk_records(val_split)
            # update pipeline
            self._out_folder.joinpath(os.path.sep.join(
                ["export", "Servo"])).mkdir(exist_ok=True, parents=True)
            # merge pipelines
            save_pipeline_config(self.pipeline, str(self._out_folder))
            # start training
            tf.logging.set_verbosity(tf.logging.INFO)
            if eval:
                self._train_and_eval()
            else:
                self._train()
        except Exception as ex:
            raise Exception("Error training the model : {}".format(ex)) from ex
        return super(TfTrainableModel, self).train()
Exemple #4
0
 def download_model(cls, model_name: str) -> str:
     available_models = cls.available_models()  # get the lis
     assert model_name in available_models, "Invalid model name {}".format(model_name)
     checkpoint_model_path = LibUtil.models_home(sub_folder="tf").joinpath(model_name)
     model_uri = available_models[model_name]
     if not checkpoint_model_path.exists():
         FileUtil.download_file(model_uri, checkpoint_model_path, unzip=True, show_progress=True)
     return checkpoint_model_path
Exemple #5
0
 def fetch(self, q, count=100, batch_size: int = 200, timestamp=1):
     try:
         total_matches = self._get_total_matches(q)
         logger.debug("{} images found ".format(total_matches))
         result = []
         for offset in range(0, total_matches, count):
             images = self._make_api_call(q, offset, count)
             result += images
             time.sleep(timestamp)
         for batch in more_itertools.chunked(result, batch_size):
             delayed_tasks = []
             for img_uri in batch:
                 try:
                     if FileUtil.exists_http_file(img_uri):
                         delayed_tasks.append(
                             dask.delayed(ImageUtil.url2img)(img_uri))
                 except Exception as ex:
                     if type(ex) in EXCEPTIONS:
                         logger.debug("skipping: {}".format(img_uri))
                     else:
                         logger.debug("skipping {}: {}".format(img_uri, ex))
                     continue
             compute_result = dask.compute(*delayed_tasks)
             yield [
                 img for img in compute_result
                 if isinstance(img, np.ndarray)
             ]
     except Exception as ex:
         logger.error("error fetching the images:  {}".format(ex))
def create_dataset(images_folder, labels_map, color_palette, n):
    try:
        # creating dataset
        dataset = Coco(v=2017)
        dataset.setup(split="train", task="segmentation")
        #labels = dataset.labels_map.values() # get valid labels
        os.makedirs(images_folder, exist_ok=True)
        FileUtil.clear_folder(images_folder)
        for batch_images in dataset.fetch(n=n,
                                          labels=list(labels_map.keys()),
                                          batch_size=500):
            for img in batch_images:
                img.export(images_folder, labels_map, color_palette)
                for region in img.regions:
                    pass
                    # print(region.shape_attributes["x"],
                    #       region.shape_attributes["y"])
    except Exception as ex:
        print("error creating the dataset {} ".format(ex))
Exemple #7
0
 def _download_dependencies(self):
     """Download the dataset dependencies"""
     print("Downloading {} dataset dependencies, it can take a few minutes".
           format(type(self).__name__))
     for dep_name, dep_uri in self._files.items():
         self._deps[dep_name] = FileUtil.download_file(dep_uri,
                                                       self.home(),
                                                       show_progress=True,
                                                       unzip=True)
     print("Download dependencies done")
Exemple #8
0
 def download_pipeline(cls, model_name: str) -> str:
     available_pipelines = cls.available_pipelines()
     assert model_name in available_pipelines, \
         "there is not a pipeline available for the model {}".format(model_name)
     pipeline_uri = available_pipelines[model_name]
     filename = Path(urlparse(pipeline_uri).path).name
     pipeline_model_path = LibUtil.pipelines_home(subfolder="tf").joinpath(filename)
     if not pipeline_model_path.exists():
         pipeline_model_path = FileUtil.download_file(pipeline_uri, pipeline_model_path.parent, show_progress=True)
     return pipeline_model_path
Exemple #9
0
 def _download_dependencies(self):
     """Download the dataset dependencies"""
     # delayed_tasks = {}
     # for dep_name, dep_uri in self._remote_dep.items():
     #     task = delayed(FileUtil.download_file)(dep_uri, self._home())
     #     delayed_tasks[dep_name] = task
     # with ProgressBar():
     #     self._dependencies = dask.compute(delayed_tasks)[0]
     logger.info(
         "Downloading {} dataset dependencies, it can take a few minutes".
         format(type(self).__name__))
     for dep_name, dep_uri in self._remote_dep.items():
         self._dependencies[dep_name] = FileUtil.download_file(
             dep_uri, self._home(), show_progress=True, unzip=True)
     logger.info("Download dependencies done")
def create_detection_dataset(images_folder, target_labels, n_images,
                             batch_size, split):
    try:
        # creating dataset
        dataset = OpenImages(
            version=6,  # versions 5 and 6 supported
            split=split,
            task="detection",
            labels=target_labels,  # target labels
            n_images=n_images,  # number of images by class
            batch_size=batch_size  # batch images size
        )
        print(len(dataset))  # size of dataset
        data_folder = Path(images_folder)
        data_folder.mkdir(exist_ok=True)
        FileUtil.clear_folder(data_folder)
        # Download images
        for i, batch_images in enumerate(dataset):
            print(
                f"download done for batch {i + 1} of {dataset.batches_count}")
            for image in batch_images:
                image.export(data_folder)  # copy images to disk
    except Exception as ex:
        print(f"[ERROR] Error creating the dataset {ex}")
Exemple #11
0
 def _fetch_single_image(self, img_info, image_id, image_label):
     try:
         img_uri = img_info["coco_url"]
         if FileUtil.exists_http_file(img_uri):
             img_arr = ImageUtil.url2img(img_uri)
             tagged_image=TaggedImage(img_arr)
             tagged_image.id=image_id
             if self.task == "detection":
                 tagged_image.regions = self._create_box_rois(img_info, image_label)
             elif self.task == "segmentation":
                 tagged_image.regions=self._create_polygon_rois(img_info,image_label)
             return tagged_image
     except Exception as ex:
         print(ex)
         logger.error("error downloading the image with id {} : {}".format(image_id,ex))
     return None
Exemple #12
0
 def install(self):
     try:
         super(TFObjectDetectionAPI, self).install()
         self._protobuf_comp()
         research_folder = self.repo_folder.joinpath("research")
         slim_folder = research_folder.joinpath("slim")
         if importlib.util.find_spec(self._package_name) is None:
             logger.debug("Installing Api")
             with FileUtil.workon(str(research_folder)):
                 os.system("python setup.py build")
                 os.system("python setup.py install")
             logger.debug("Api installation done")
         sys.path.append(str(research_folder))
         sys.path.append(str(slim_folder))
         os.environ['PATH'] += "{}{}{}".format(str(research_folder),
                                               os.pathsep, str(slim_folder))
     except Exception as ex:
         logger.error("Error installing the package : {}".format(ex))