Exemple #1
0
model_es = word_vectors.load_model('resources/big/vectors_es_100.bin')
model_pt = word_vectors.load_model('resources/big/vectors_pt_100.bin')

logging.info("computing equal words...")
equal_words = model_es.vocab.keys() & model_pt.vocab.keys()

print("Equal words number in the Wikipedia's:", len(equal_words))

SAMPLE_SIZE = 20
print("Sample", SAMPLE_SIZE, "equal words found:",
      random.sample(equal_words, SAMPLE_SIZE))

T = linear_trans.load_linear_transformation(
    'resources/big/trans_es_100_pt_100.npz')

clf = classifier.build_classifier()

X_train, y_train = classifier.features_and_labels(training_friend_pairs,
                                                  model_es, model_pt, T)

logging.info("training...")
clf.fit(X_train, y_train)

equal_friend_pairs = (classifier.FriendPair(word, word, None)
                      for word in equal_words)

logging.info("computing features...")
X_equal, _ = classifier.features_and_labels(equal_friend_pairs, model_es,
                                            model_pt, T)

logging.info("predicting equal words...")
    def command_classify(args_):
        training_friend_pairs = util.read_words(
            args_.training_friends_file_name)
        testing_friend_pairs = util.read_words(args_.testing_friends_file_name)
        model_es, model_pt = util.read_models(args_)

        T = linear_trans.load_linear_transformation(
            args_.translation_matrix_file_name)

        clf = classifier.build_classifier(CLF_OPTIONS[args_.classifier])

        if args_.cross_validation:
            friend_pairs = training_friend_pairs + testing_friend_pairs

            X, y, = classifier.features_and_labels(
                friend_pairs,
                model_es,
                model_pt,
                T,
                backwards=args_.backwards,
                topx=args_.top,
                use_taxonomy=args_.use_taxonomy)
            measures = classifier.classify_with_cross_validation(X, y, clf=clf)
            print('')

            print("Cross-validation measures with 95% of confidence:")

            for measure_name, (mean, delta) in measures.items():
                print(
                    "{measure_name}: {mean:0.4f} ± {delta:0.4f} --- [{inf:0.4f}, {sup:0.4f}]"
                    .format(measure_name=measure_name,
                            mean=mean,
                            delta=delta,
                            inf=mean - delta,
                            sup=mean + delta))

            print('')

            mean_measures = {
                measure_name: mean
                for measure_name, (mean, delta) in measures.items()
            }
            _print_metrics_matrix(mean_measures)
            _print_confusion_matrix(mean_measures)
        else:
            X_train, y_train = classifier.features_and_labels(
                training_friend_pairs,
                model_es,
                model_pt,
                T,
                backwards=args_.backwards,
                topx=args_.top,
                use_taxonomy=args_.use_taxonomy)
            X_test, y_test = classifier.features_and_labels(
                testing_friend_pairs,
                model_es,
                model_pt,
                T,
                backwards=args_.backwards,
                topx=args_.top,
                use_taxonomy=args_.use_taxonomy)
            measures = classifier.classify(X_train, X_test, y_train, y_test,
                                           clf)

            print('')

            _print_metrics_matrix(measures)
            _print_confusion_matrix(measures)