def slda_infer():
    category = request.form['category']
    in_type = request.form['type']
    f_text = input_doc_str(in_type)
    inference_engine_wrapper = InferenceEngineWrapper(get_model_dir(category),
                                                      get_slda_conf())
    seg_list = inference_engine_wrapper.tokenize(f_text)
    sentences = []
    length = len(seg_list)
    for index in range(0, length, 5):
        sentences.append(seg_list[index:index + 5])
    topic_dist = inference_engine_wrapper.slda_infer(sentences)

    return json_format(topic_dist)
def doc_topic_word_slda():
    category = request.form['category']
    in_type = request.form['type']
    f_text = input_doc_str(in_type)
    inference_engine_wrapper = InferenceEngineWrapper(get_model_dir(category),
                                                      get_slda_conf())
    seg_list = inference_engine_wrapper.tokenize(f_text)
    sentences = []
    length = len(seg_list)
    for index in range(0, length, 5):
        sentences.append(seg_list[index:index + 5])
    topic_dist = inference_engine_wrapper.slda_infer(sentences)

    result = {}
    for key, value in dict(topic_dist).items():
        twe_wrapper = TopicalWordEmbeddingsWrapper(get_model_dir(category),
                                                   get_emb_file(category))
        result_dict = dict(
            twe_wrapper.nearest_words_around_topic(int(key), get_count()))
        result[value] = result_dict

    return json.dumps(result)
Exemple #3
0
import sys
from familia_wrapper import InferenceEngineWrapper

if sys.version_info < (3, 0):
    input = raw_input

if __name__ == '__main__':
    if len(sys.argv) < 3:
        sys.stderr.write("Usage:python {} {} {}\n".format(
            sys.argv[0], "model_dir", "conf_file"))
        exit(-1)
    # 获取参数
    model_dir = sys.argv[1]
    conf_file = sys.argv[2]
    # 创建InferenceEngineWrapper对象
    inference_engine_wrapper = InferenceEngineWrapper(model_dir, conf_file)
    while True:
        input_text = input("Enter Document: ")
        # 分词
        seg_list = inference_engine_wrapper.tokenize(input_text.strip())
        # 构建句子结构,5个词为一个句子
        sentences = []
        length = len(seg_list)
        for index in range(0, length, 5):
            sentences.append(seg_list[index:index + 5])
        # 进行推断
        topic_dist = inference_engine_wrapper.slda_infer(sentences)
        # 打印结果
        print("Document Topic Distribution:")
        print(topic_dist)
Exemple #4
0
import sys
from familia_wrapper import InferenceEngineWrapper

if sys.version_info < (3,0):
    input = raw_input

if __name__ == '__main__':
    if len(sys.argv) < 3:
        sys.stderr.write("Usage:python {} {} {}\n".format(
            sys.argv[0], "model_dir", "conf_file"))
        exit(-1)
    # 获取参数
    model_dir = sys.argv[1]
    conf_file = sys.argv[2]
    # 创建InferenceEngineWrapper对象
    inference_engine_wrapper = InferenceEngineWrapper(model_dir, conf_file)
    while True:
        input_text = input("Enter Document: ")
        # 分词
        seg_list = inference_engine_wrapper.tokenize(input_text.strip())
        # 构建句子结构,5个词为一个句子
        sentences = []
        length = len(seg_list)
        for index in range(0, length, 5):
            sentences.append(seg_list[index: index + 5])
        # 进行推断
        topic_dist = inference_engine_wrapper.slda_infer(sentences)
        # 打印结果
        print("Document Topic Distribution:")
        print(topic_dist)