Exemple #1
0
 def test_lineplot_dict_input(self, data_source, bin_size):
     data = {k: getattr(self, d) for k, d in data_source.items()}
     lplot = kplot.LinePlot(data, bin_size=bin_size)
     gfig = kplot.GenomicFigure([lplot])
     fig, axes = gfig.plot("chr11:77497000-77500000")
     assert all(len(l.get_ydata()) > 5 for a in axes for l in a.get_lines())
     assert all(l.get_label() == n_p
                for l, n_p in zip(axes[0].get_lines(), data.keys()))
Exemple #2
0
 def test_lineplot(self, data_source, bin_size):
     data = [getattr(self, d) for d in data_source]
     if len(data) == 1:
         data = data[0]
     lplot = kplot.LinePlot(data, bin_size=bin_size)
     gfig = kplot.GenomicFigure([lplot])
     fig, axes = gfig.plot("chr11:77497000-77500000")
     assert all(len(l.get_ydata()) > 5 for l in axes[0].get_lines())
Exemple #3
0
 def test_highlight_plot(self, crange):
     bplot = kplot.BigWigPlot(self.bigwig_path)
     gplot = kplot.GenePlot(self.gtf_path)
     high = kplot.HighlightAnnotation(self.peak_path)
     gfig = kplot.GenomicFigure([bplot, gplot, high])
     fig, axes = gfig.plot("chr11:{}-{}".format(*crange))
     p1 = high.patches[0]
     assert gplot.ax.transAxes.transform(
         (0,
          0))[1] == pytest.approx(p1._transform.transform(p1.get_xy())[1])
Exemple #4
0
 def test_geneplot(self, collapse, squash_group):
     squash, group_by = squash_group
     gplot = kplot.GenePlot(self.gtf_path,
                            collapse=collapse,
                            squash=squash,
                            group_by=group_by)
     gfig = kplot.GenomicFigure([gplot])
     selector = "chr11:77490000-77500000"
     fig, axes = gfig.plot(selector)
     assert len(axes[0].patches) == (19 if squash else 49)
     plt.close(fig)
def plot_region(name, region, promoter, rnaseq_ylim):
    output_file = os.path.join("figures", "figure_stg10_panels", name + ".pdf")
    logging.info("Working on %s", name)
    logging.info("Will write output to %s", output_file)

    control_v4c = fancplot.Virtual4CPlot(control_stg10_hic, viewpoint=promoter,
                                     aspect=0.05, color="black",
                                     draw_minor_ticks=False)
    gd7_v4c = fancplot.Virtual4CPlot(gd7_stg10_hic, viewpoint=promoter,
                                     aspect=0.05, color="#648fff",
                                     draw_minor_ticks=False)
    Tollrm910_v4c = fancplot.Virtual4CPlot(Tollrm910_stg10_hic, viewpoint=promoter,
                                           aspect=0.05, color="#dc267f",
                                           draw_minor_ticks=False)
    Toll10B_v4c = fancplot.Virtual4CPlot(Toll10B_stg10_hic, viewpoint=promoter,
                                         aspect=0.05, color="#ffb000",
                                         draw_minor_ticks=False)

    ha_plot = fancplot.HighlightAnnotation(bed=pybedtools.BedTool(re.sub(":|-", " ", promoter), from_string=True),
                                           plot1=control_v4c, plot2=Toll10B_v4c,
                                           plot_kwargs={"color": "gray"})

    plots = [control_stg10_hic_plot,
             gd7_stg10_hic_plot,
             Tollrm910_stg10_hic_plot,
             Toll10B_stg10_hic_plot,
             
             control_v4c,
             gd7_v4c,
             Tollrm910_v4c,
             Toll10B_v4c,
             ha_plot,
             rnaseq_plot_E04,
             rnaseq_plot_E48,
             genes_plot
             ]

    with fancplot.GenomicFigure(plots, ticks_last=True) as gfig:
        fig, axes = gfig.plot(region)
        seaborn.despine(ax=axes[4], top=True, right=True)
        seaborn.despine(ax=axes[5], top=True, right=True)
        seaborn.despine(ax=axes[6], top=True, right=True)
        seaborn.despine(ax=axes[7], top=True, right=True)
        axes[4].set_ylim([0, 0.025])
        axes[5].set_ylim([0, 0.025])
        axes[6].set_ylim([0, 0.025])
        axes[7].set_ylim([0, 0.025])
        # RNA-seq axes
        axes[8].set_ylim([0, rnaseq_ylim])
        axes[9].set_ylim([0, rnaseq_ylim])
       # seaborn.despine(ax=axes[4], bottom=True)
        # seaborn.despine(ax=axes[5], bottom=True)
        fig.savefig(output_file, bbox_inches='tight')
Exemple #6
0
 def test_invert_x_independent_x(self, crange):
     offset = 150000
     bplot = kplot.BigWigPlot(self.bigwig_path)
     gplot = kplot.GenePlot(self.gtf_path)
     gfig = kplot.GenomicFigure([bplot, gplot], invert_x=True)
     fig, axes = gfig.plot("chr11:{}-{}".format(*crange))
     ax_lim = axes[0].get_xlim()
     assert (ax_lim[0] > ax_lim[1]
             for ax_lim in (a.get_xlim() for a in axes))
     bplot = kplot.BigWigPlot(self.bigwig_path, invert_x=True)
     gplot = kplot.GenePlot(self.gtf_path)
     gfig = kplot.GenomicFigure([bplot, gplot], independent_x=True)
     fig, axes = gfig.plot([
         "chr11:{}-{}".format(*crange),
         "chr11:{}-{}".format(crange[0] + offset, crange[1] + offset)
     ])
     ax_lim = [ax.get_xlim() for ax in axes]
     abs_tol = 10000
     assert ax_lim[0][0] == pytest.approx(crange[1], abs=abs_tol)
     assert ax_lim[0][1] == pytest.approx(crange[0], abs=abs_tol)
     assert ax_lim[1][0] == pytest.approx(crange[1] + offset, abs=abs_tol)
     assert ax_lim[1][1] == pytest.approx(crange[0] + offset, abs=abs_tol)
Exemple #7
0
def plot_region(name, region, promoter, rnaseq_ylim):
    output_file = os.path.join("figures", "figure_4_panels", name + ".pdf")
    logging.info("Working on %s", name)
    logging.info("Will write output to %s", output_file)

    gd7_v4c = fancplot.Virtual4CPlot(gd7_nc14_hic,
                                     viewpoint=promoter,
                                     aspect=0.05,
                                     color="#648fff",
                                     draw_minor_ticks=False)
    Tollrm910_v4c = fancplot.Virtual4CPlot(Tollrm910_nc14_hic,
                                           viewpoint=promoter,
                                           aspect=0.05,
                                           color="#dc267f",
                                           draw_minor_ticks=False)
    Toll10B_v4c = fancplot.Virtual4CPlot(Toll10B_nc14_hic,
                                         viewpoint=promoter,
                                         aspect=0.05,
                                         color="#ffb000",
                                         draw_minor_ticks=False)

    ha_plot = fancplot.HighlightAnnotation(bed=pybedtools.BedTool(
        re.sub(":|-", " ", promoter), from_string=True),
                                           plot1=gd7_v4c,
                                           plot2=Toll10B_v4c,
                                           plot_kwargs={"color": "gray"})

    plots = [
        gd7_nc14_hic_plot, rnaseq_plot_gd7, h3k27ac_plot_gd7, gd7_enh_plot,
        h3k27me3_plot_gd7, Tollrm910_nc14_hic_plot, rnaseq_plot_Tollrm910,
        h3k27ac_plot_Tollrm910, Tollrm910_enh_plot, h3k27me3_plot_Tollrm910,
        Toll10B_nc14_hic_plot, rnaseq_plot_toll10b, h3k27ac_plot_toll10b,
        toll10b_enh_plot, h3k27me3_plot_toll10b, gd7_v4c, Tollrm910_v4c,
        Toll10B_v4c, ha_plot, genes_plot
    ]

    with fancplot.GenomicFigure(plots, ticks_last=True) as gfig:
        fig, axes = gfig.plot(region)
        seaborn.despine(ax=axes[15], top=True, right=True)
        seaborn.despine(ax=axes[16], top=True, right=True)
        seaborn.despine(ax=axes[17], top=True, right=True)
        # axes[15].set_ylim([0, 0.02])
        # axes[16].set_ylim([0, 0.02])
        # axes[17].set_ylim([0, 0.02])
        # RNA-seq axes
        axes[1].set_ylim([0, rnaseq_ylim])
        axes[6].set_ylim([0, rnaseq_ylim])
        axes[11].set_ylim([0, rnaseq_ylim])
        # seaborn.despine(ax=axes[4], bottom=True)
        # seaborn.despine(ax=axes[5], bottom=True)
        fig.savefig(output_file)
Exemple #8
0
 def test_hicplot2d_inputs(self, norm, colormap, colorbar, blend_zero,
                           aspect, vrange, crange, unmappable_color,
                           adjust_range):
     start, end = crange
     vmin, vmax = vrange
     hplot = kplot.HicPlot2D(hic_data=self.hic_matrix,
                             title="quark",
                             norm=norm,
                             vmin=vmin,
                             vmax=vmax,
                             colormap=colormap,
                             show_colorbar=colorbar,
                             adjust_range=adjust_range,
                             blend_zero=blend_zero,
                             aspect=aspect,
                             unmappable_color=unmappable_color)
     gfig = kplot.GenomicFigure([hplot])
     selector = "chr11:{}-{}".format(start, end)
     fig, axes = gfig.plot(selector)
     assert axes[0].get_title() == "quark"
     norm_values = {"lin": mpl.colors.Normalize, "log": mpl.colors.LogNorm}
     assert isinstance(hplot.norm, norm_values[norm])
     assert axes[0].get_xlim() == (start, end)
     assert axes[0].get_ylim() == (start, end)
     if vmin is not None:
         assert hplot.im.norm.vmin == vmin
     if vmax is not None:
         assert hplot.im.norm.vmax == vmax
     assert hplot.aspect == aspect
     assert abs_ax_aspect(axes[0]) == pytest.approx(aspect)
     colorbar_values = {True: mpl.colorbar.Colorbar, False: type(None)}
     assert isinstance(hplot.colorbar, colorbar_values[colorbar])
     hic_matrix = self.hic_matrix[selector, selector]
     zero_mask = np.isclose(hic_matrix, 0.)
     unmap_mask = np.all(zero_mask, axis=0)
     unmap_mask = np.logical_or(unmap_mask, unmap_mask[:, np.newaxis])
     if unmappable_color is not None:
         unmap_color = mpl.colors.colorConverter.to_rgba(unmappable_color)
         assert np.all(
             np.isclose(hplot.im.get_array()[unmap_mask, :], unmap_color))
     # blend zero only really makes sense with log normalization, with
     # linear normalization 0 values map to the first colormap value anyway
     if norm == "log":
         exp_zero = np.logical_and(zero_mask, np.logical_not(unmap_mask))
         if np.sum(exp_zero) > 0:
             zero_value = hplot.colormap(0)
             zero_blended = np.all(
                 np.isclose(hplot.im.get_array()[exp_zero, :], zero_value))
             assert blend_zero == zero_blended
     plt.close(fig)
Exemple #9
0
 def test_hicsliceplot(self, n_hic, yscale, ylim, slice_region, names):
     hic_data = self.hic_matrix if n_hic == 1 else [self.hic_matrix] * n_hic
     names_passed = None if names is None else [
         "hic{}".format(i) for i in range(n_hic)
     ]
     splot = kplot.HicSlicePlot(hic_data,
                                slice_region,
                                names=names_passed,
                                ylim=ylim,
                                yscale=yscale)
     gfig = kplot.GenomicFigure([splot])
     selector = "chr11:{}-{}".format(77400000, 78600000)
     fig, axes = gfig.plot(selector)
     assert axes[0].get_yscale() == yscale
     for a, b in zip(ylim, axes[0].get_ylim()):
         assert a is None or a == pytest.approx(b)
     if names is not None:
         assert all(l.get_label() == n_p
                    for l, n_p in zip(axes[0].get_lines(), names_passed))
     plt.close(fig)
Exemple #10
0
 def test_tick_removal(self, width, cax_width, ticks_last, draw_labels,
                       draw_ticks, draw_x_axis):
     splot = kplot.HicSlicePlot(self.hic_matrix, "chr11:77800000-77850000")
     hplot = kplot.HicPlot2D(hic_data=self.hic_matrix,
                             draw_ticks=draw_ticks,
                             draw_tick_labels=draw_labels,
                             draw_x_axis=draw_x_axis)
     hplot2 = kplot.HicPlot(hic_data=self.hic_matrix)
     gfig = kplot.GenomicFigure([splot, hplot, hplot2],
                                width=width,
                                ticks_last=ticks_last,
                                cax_width=cax_width)
     selector = "chr11:{}-{}".format(77400000, 78600000)
     fig, axes = gfig.plot(selector)
     # hplot2 should always have labels and lines
     assert all(l.get_visible() for l in axes[2].get_xticklabels()) and all(
         l.get_visible() for l in axes[2].xaxis.get_majorticklines())
     # hplot labels are affected by the three draw parameters
     should_have_labels = draw_x_axis and draw_labels and (not ticks_last)
     assert should_have_labels == all(l.get_visible()
                                      for l in axes[1].get_xticklabels())
     # But it should have tick lines even when ticks_last=True
     should_have_ticks = draw_x_axis and draw_ticks
     assert should_have_ticks == all(
         l.get_visible() for l in axes[1].xaxis.get_majorticklines())
     assert should_have_ticks == all(
         l.get_visible() for l in axes[1].xaxis.get_minorticklines())
     # splot should always have ticks and lines
     assert all(l.get_visible() for l in axes[0].xaxis.get_majorticklines())
     assert all(l.get_visible() for l in axes[0].xaxis.get_minorticklines())
     # splot only labels if ticks_last=False
     assert ticks_last != all(l.get_visible()
                              for l in axes[0].get_xticklabels())
     bbox = axes[0].get_position()
     figsize = fig.get_size_inches()
     assert bbox.width * figsize[0] == pytest.approx(width)
     bbox = hplot.cax.get_position()
     assert bbox.width * figsize[0] == pytest.approx(cax_width)
     plt.close(fig)
Exemple #11
0
 def test_bigwig_plot(self, file, crange, n_bw, ylim, yscale, names,
                      bin_size):
     path = getattr(self, "{}_path".format(file))
     bw_data = path if n_bw == 1 else [path] * n_bw
     names_passed = None if names is None else [
         "bw{}".format(i) for i in range(n_bw)
     ]
     bplot = kplot.BigWigPlot(bw_data,
                              names=names_passed,
                              bin_size=bin_size,
                              ylim=ylim,
                              yscale=yscale)
     gfig = kplot.GenomicFigure([bplot])
     fig, axes = gfig.plot("chr11:{}-{}".format(*crange))
     assert axes[0].get_yscale() == yscale
     for a, b in zip(ylim, axes[0].get_ylim()):
         assert a is None or a == pytest.approx(b)
     if names is not None:
         assert all(l.get_label() == n_p
                    for l, n_p in zip(axes[0].get_lines(), names_passed))
     # Should figure out exactly how many data points I expect instead...
     assert all(len(l.get_ydata()) > 5 for l in axes[0].get_lines())
     plt.close(fig)
def plot_region(name, region):
    output_file = os.path.join("figures", "figure_4_panels", name + ".pdf")
    logging.info("Working on %s", name)
    logging.info("Will write output to %s", output_file)

    gd7_nc14_hic = fanc.load(os.path.join("data", "hic", "merged", "gd7-nc14",
                                          "hic", "gd7-nc14_5kb.hic"),
                             mode="r")
    gd7_nc14_hic_plot = fancplot.HicPlot(gd7_nc14_hic,
                                         norm="log",
                                         vmin=1e-03,
                                         vmax=1e-01,
                                         draw_minor_ticks=False,
                                         title="gd7",
                                         max_dist='250kb')
    gd7_nc14_diff = fanc.load(os.path.join(
        "data", "hic", "merged", "gd7-nc14", "hic",
        "diff_control-nc14_gd7-nc14_5kb.hic"),
                              mode="r")
    gd7_nc14_diff_plot = fancplot.HicPlot(gd7_nc14_diff,
                                          norm="lin",
                                          colormap='bwr_r',
                                          vmin=-0.01,
                                          vmax=0.01,
                                          draw_minor_ticks=False,
                                          max_dist='250kb')

    Tollrm910_nc14_hic = fanc.load(os.path.join("data", "hic", "merged",
                                                "Tollrm910-nc14", "hic",
                                                "Tollrm910-nc14_5kb.hic"),
                                   mode="r")
    Tollrm910_nc14_hic_plot = fancplot.HicPlot(Tollrm910_nc14_hic,
                                               norm="log",
                                               vmin=1e-03,
                                               vmax=1e-01,
                                               draw_minor_ticks=False,
                                               title="Tollrm910",
                                               max_dist='250kb')
    Tollrm910_nc14_diff = fanc.load(os.path.join(
        "data", "hic", "merged", "Tollrm910-nc14", "hic",
        "diff_control-nc14_Tollrm910-nc14_5kb.hic"),
                                    mode="r")
    Tollrm910_nc14_diff_plot = fancplot.HicPlot(Tollrm910_nc14_diff,
                                                norm="lin",
                                                colormap='bwr_r',
                                                vmin=-0.01,
                                                vmax=0.01,
                                                draw_minor_ticks=False,
                                                max_dist='250kb')

    Toll10B_nc14_hic = fanc.load(os.path.join("data", "hic", "merged",
                                              "Toll10B-nc14", "hic",
                                              "Toll10B-nc14_5kb.hic"),
                                 mode="r")
    Toll10B_nc14_hic_plot = fancplot.HicPlot(Toll10B_nc14_hic,
                                             norm="log",
                                             vmin=1e-03,
                                             vmax=1e-01,
                                             draw_minor_ticks=False,
                                             title="Toll10B",
                                             max_dist='250kb')
    Toll10B_nc14_diff = fanc.load(os.path.join(
        "data", "hic", "merged", "Toll10B-nc14", "hic",
        "diff_control-nc14_Toll10B-nc14_5kb.hic"),
                                  mode="r")
    Toll10B_nc14_diff_plot = fancplot.HicPlot(Toll10B_nc14_diff,
                                              norm="lin",
                                              colormap='bwr_r',
                                              vmin=-0.01,
                                              vmax=0.01,
                                              draw_minor_ticks=False,
                                              max_dist='250kb')

    genes = "external_data/flybase/dmel-all-r6.30.gtf.gz"
    genes_plot = fancplot.GenePlot(genes,
                                   squash=True,
                                   group_by="gene_symbol",
                                   aspect=0.15,
                                   label_field="gene_symbol",
                                   show_labels=False,
                                   draw_minor_ticks=False)

    rnaseq_dict = {
        name:
        os.path.join("external_data", "koenecke_2016_2017", "rnaseq_aligned",
                     name + "_sorted_filtered_merged_canonical_chrs_rnaseq.bw")
        for name in ["gd7", "tlrm910", "tl10b"]
    }

    h3k27ac_dict = {
        name: os.path.join(
            "external_data", "koenecke_2016_2017", "chipseq_aligned",
            "H3K27ac_" + name + "_sorted_filtered_merged_canonical_chrs.bw")
        for name in ["gd7", "tl10b"]
    }
    h3k27ac_dict["Tollrm910"] = os.path.join(
        "external_data", "extra_chip-seq", "chipseq_aligned",
        "H3K27ac_Tollrm910_sorted_filtered_merged_canonical_chrs.bw")

    h3k27me3_dict = {
        name: os.path.join(
            "external_data", "koenecke_2016_2017", "chipseq_aligned",
            "H3K27me3_" + name + "_sorted_filtered_merged_canonical_chrs.bw")
        for name in ["gd7", "tl10b"]
    }
    h3k27me3_dict["Tollrm910"] = os.path.join(
        "external_data", "extra_chip-seq", "chipseq_aligned",
        "H3K27me3_Tollrm910_sorted_filtered_merged_canonical_chrs.bw")

    # ins_dict = {name: os.path.join("data", "boundaries", name + "_2kb_8.bw")
    #             for name in ["gd7-nc14", "Tollrm910-nc14", "Toll10B-nc14", "3-4h"]}

    rnaseq_ylim = fancplot.helpers.LimitGroup()
    rnaseq_ylim = [0, 10]
    h3k27ac_ylim = fancplot.helpers.LimitGroup()
    h3k27me3_ylim = fancplot.helpers.LimitGroup()

    rnaseq_plot_gd7 = fancplot.LinePlot(rnaseq_dict['gd7'],
                                        fill=False,
                                        plot_kwargs={'color': "#648fff"},
                                        draw_minor_ticks=False,
                                        aspect=0.05,
                                        ylim=rnaseq_ylim,
                                        n_yticks=2)

    h3k27ac_plot_gd7 = fancplot.LinePlot(h3k27ac_dict['gd7'],
                                         fill=False,
                                         plot_kwargs={'color': "#648fff"},
                                         draw_minor_ticks=False,
                                         aspect=0.05,
                                         ylim=h3k27ac_ylim,
                                         n_yticks=2)
    h3k27me3_plot_gd7 = fancplot.LinePlot(h3k27me3_dict['gd7'],
                                          fill=False,
                                          plot_kwargs={'color': "#648fff"},
                                          draw_minor_ticks=False,
                                          aspect=0.05,
                                          ylim=h3k27me3_ylim,
                                          n_yticks=2)

    rnaseq_plot_Tollrm910 = fancplot.LinePlot(rnaseq_dict['tlrm910'],
                                              fill=False,
                                              plot_kwargs={'color': "#dc267f"},
                                              draw_minor_ticks=False,
                                              aspect=0.05,
                                              ylim=rnaseq_ylim,
                                              n_yticks=2)

    h3k27ac_plot_Tollrm910 = fancplot.LinePlot(
        h3k27ac_dict['Tollrm910'],
        fill=False,
        plot_kwargs={'color': "#dc267f"},
        draw_minor_ticks=False,
        aspect=0.05,
        ylim=h3k27ac_ylim,
        n_yticks=2)
    h3k27me3_plot_Tollrm910 = fancplot.LinePlot(
        h3k27me3_dict['Tollrm910'],
        fill=False,
        plot_kwargs={'color': "#dc267f"},
        draw_minor_ticks=False,
        aspect=0.05,
        ylim=h3k27me3_ylim,
        n_yticks=2)

    rnaseq_plot_toll10b = fancplot.LinePlot(rnaseq_dict['tl10b'],
                                            fill=False,
                                            plot_kwargs={'color': "#ffb000"},
                                            draw_minor_ticks=False,
                                            aspect=0.05,
                                            ylim=rnaseq_ylim,
                                            n_yticks=2)

    h3k27ac_plot_toll10b = fancplot.LinePlot(h3k27ac_dict['tl10b'],
                                             fill=False,
                                             plot_kwargs={'color': "#ffb000"},
                                             draw_minor_ticks=False,
                                             aspect=0.05,
                                             ylim=h3k27ac_ylim,
                                             n_yticks=2)
    h3k27me3_plot_toll10b = fancplot.LinePlot(h3k27me3_dict['tl10b'],
                                              fill=False,
                                              plot_kwargs={'color': "#ffb000"},
                                              draw_minor_ticks=False,
                                              aspect=0.05,
                                              ylim=h3k27me3_ylim,
                                              n_yticks=2)

    gd7_enh = "data/supplementary_tables/gd7_candidate_enhancers.bed"
    gd7_enh_plot = fancplot.GenomicFeaturePlot(gd7_enh,
                                               aspect=0.02,
                                               color="#648fff",
                                               draw_minor_ticks=False)

    Tollrm910_enh = "data/supplementary_tables/Tollrm910_candidate_enhancers.bed"
    Tollrm910_enh_plot = fancplot.GenomicFeaturePlot(Tollrm910_enh,
                                                     aspect=0.02,
                                                     color="#dc267f",
                                                     draw_minor_ticks=False)

    toll10b_enh = "data/supplementary_tables/Toll10B_candidate_enhancers.bed"
    toll10b_enh_plot = fancplot.GenomicFeaturePlot(toll10b_enh,
                                                   aspect=0.02,
                                                   color="#ffb000",
                                                   draw_minor_ticks=False)

    plots = [
        gd7_nc14_hic_plot, gd7_nc14_diff_plot, rnaseq_plot_gd7,
        h3k27ac_plot_gd7, gd7_enh_plot, h3k27me3_plot_gd7,
        Tollrm910_nc14_hic_plot, Tollrm910_nc14_diff_plot,
        rnaseq_plot_Tollrm910, h3k27ac_plot_Tollrm910, Tollrm910_enh_plot,
        h3k27me3_plot_Tollrm910, Toll10B_nc14_hic_plot, Toll10B_nc14_diff_plot,
        rnaseq_plot_toll10b, h3k27ac_plot_toll10b, toll10b_enh_plot,
        h3k27me3_plot_toll10b, genes_plot
    ]

    with fancplot.GenomicFigure(plots, ticks_last=True) as gfig:
        fig, axes = gfig.plot(region)
        fig.savefig(output_file)
boundaries = fanc.Boundaries.from_insulation_score(insulation,
                                                   window_size=1000000)
# end snippet boundaries run

# start snippet boundaries regions
for boundary in boundaries.regions:
    score = boundary.score
# end snippet boundaries regions

# start snippet boundaries plot
ph = fancplot.TriangularMatrixPlot(hic_100kb,
                                   max_dist=5000000,
                                   vmin=0,
                                   vmax=0.05)
pb = fancplot.BarPlot(boundaries)
f = fancplot.GenomicFigure([ph, pb])
fig, axes = f.plot('chr18:18mb-28mb')
# end snippet boundaries plot
fig.savefig("../docsrc/api/analyse/images/boundaries.png")
plt.close(fig)

# start snippet boundaries fp
min_score = 1.0
robust_boundaries = []
for boundary in boundaries.regions:
    score = boundary.score
    if score >= min_score:
        robust_boundaries.append(boundary)
# end snippet boundaries fp

# start snippet boundaries minscore
Exemple #14
0
 def test_genomic_feature_score_plot(self, attribute):
     gfsplot = kplot.GenomicFeatureScorePlot(self.peak_path,
                                             attribute=attribute)
     gfig = kplot.GenomicFigure([gfsplot])
     fig, axes = gfig.plot("chr11:77497000-77500000")
     assert len(axes[0].patches) == 2
Exemple #15
0
 def test_genomic_feature_plot(self):
     gfplot = kplot.GenomicFeaturePlot(self.peak_path, label_field=8)
     gfig = kplot.GenomicFigure([gfplot])
     fig, axes = gfig.plot("chr11:77497000-77500000")
     assert len(axes[0].patches) == 2
                                                  file_name="architecture/comparisons/esc_vs_cn.diff")
fc_esc_cn = fanc.FoldChangeMatrix.from_matrices(hic_esc, hic_cn, log_cmp=True,
                                                file_name="architecture/comparisons/esc_vs_cn.fc")
# end snippet comparisons compare

# start snippet comparisons plot
p_esc = fancplot.TriangularMatrixPlot(hic_esc, vmin=0, vmax=0.05,
                                      max_dist=400000)
p_cn = fancplot.TriangularMatrixPlot(hic_cn, vmin=0, vmax=0.05,
                                     max_dist=400000)
p_diff = fancplot.TriangularMatrixPlot(diff_esc_cn, vmin=-0.02, vmax=0.02,
                                       colormap='bwr', max_dist=400000)
p_fc = fancplot.TriangularMatrixPlot(fc_esc_cn, vmin=-1.5, vmax=1.5,
                                     colormap='PiYG', max_dist=400000)

gf = fancplot.GenomicFigure([p_esc, p_cn, p_diff, p_fc], ticks_last=True)
fig, axes = gf.plot("chr1:167.9mb-168.7mb")
# end snippet comparisons plot
fig.savefig("../docsrc/api/analyse/images/comparisons_matrices.png")
plt.close(fig)

# start snippet comparisons custom
from fanc.architecture.comparisons import ComparisonMatrix


class CustomComparisonMatrix(ComparisonMatrix):
    _classid = 'CUSTOMCOMPARISONMATRIX'

    def __init__(self, *args, **kwargs):
        ComparisonMatrix.__init__(self, *args, **kwargs)
Exemple #17
0
def plot_regions(regions):

    h = fanc.load(os.path.join("data", "hic", "merged", "3-4h", "hic",
                               "3-4h_2kb.hic"),
                  mode="r")
    h_plot = fancplot.HicPlot(h,
                              vmin=1e-03,
                              vmax=1e-01,
                              norm="log",
                              draw_minor_ticks=False)

    genes = "external_data/flybase/dmel-all-r6.30.gtf.gz"
    genes_plot = fancplot.GenePlot(genes,
                                   squash=True,
                                   group_by="gene_symbol",
                                   aspect=0.15,
                                   label_field="gene_symbol",
                                   show_labels=False,
                                   draw_minor_ticks=False)

    rnaseq_dict = {
        name:
        os.path.join("external_data", "koenecke_2016_2017", "rnaseq_aligned",
                     name + "_sorted_filtered_merged_canonical_chrs_rnaseq.bw")
        for name in ["gd7", "tlrm910", "tl10b"]
    }
    h3k27ac_dict = {
        name: os.path.join(
            "external_data", "koenecke_2016_2017", "chipseq_aligned",
            "H3K27ac_" + name + "_sorted_filtered_merged_canonical_chrs.bw")
        for name in ["gd7", "tl10b"]
    }
    h3k27ac_dict["Tollrm910"] = os.path.join(
        "external_data", "extra_chip-seq", "chipseq_aligned",
        "H3K27ac_Tollrm910_sorted_filtered_merged_canonical_chrs.bw")

    rnaseq_ylim = fancplot.helpers.LimitGroup()
    h3k27ac_ylim = fancplot.helpers.LimitGroup()
    polii_ylim = fancplot.helpers.LimitGroup()

    # polii_chip_early = os.path.join("external_data", "blythe_2015", "aligned",
    #                           "PolII-pSer5_NC14-early_sorted_filtered_merged_canonical_chrs.bw")
    # polii_chip_mid = os.path.join("external_data", "blythe_2015", "aligned",
    #                           "PolII-pSer5_NC14-middle_sorted_filtered_merged_canonical_chrs.bw")
    polii_chip_late = os.path.join(
        "external_data", "blythe_2015", "aligned",
        "PolII-pSer5_NC14-late_sorted_filtered_merged_canonical_chrs.bw")

    # polii_early_plot = fancplot.LinePlot(polii_chip_early, fill=True, plot_kwargs={'color': "black"},
    #                                  draw_minor_ticks=False, aspect=0.05,
    #                                  ylim=polii_ylim, n_yticks=2)
    # polii_mid_plot = fancplot.LinePlot(polii_chip_mid, fill=True, plot_kwargs={'color': "black"},
    #                                  draw_minor_ticks=False, aspect=0.05,
    #                                  ylim=polii_ylim, n_yticks=2)
    polii_late_plot = fancplot.LinePlot(polii_chip_late,
                                        fill=True,
                                        plot_kwargs={'color': "black"},
                                        draw_minor_ticks=False,
                                        aspect=0.05,
                                        ylim=polii_ylim,
                                        n_yticks=2)

    rnaseq_plot_gd7 = fancplot.LinePlot(rnaseq_dict['gd7'],
                                        fill=True,
                                        plot_kwargs={'color': "#648fff"},
                                        draw_minor_ticks=False,
                                        aspect=0.05,
                                        n_yticks=2)

    h3k27ac_plot_gd7 = fancplot.LinePlot(h3k27ac_dict['gd7'],
                                         fill=True,
                                         plot_kwargs={'color': "#648fff"},
                                         draw_minor_ticks=False,
                                         aspect=0.05,
                                         ylim=h3k27ac_ylim,
                                         n_yticks=2)

    rnaseq_plot_Tollrm910 = fancplot.LinePlot(rnaseq_dict['tlrm910'],
                                              fill=True,
                                              plot_kwargs={'color': "#dc267f"},
                                              draw_minor_ticks=False,
                                              aspect=0.05,
                                              n_yticks=2)

    h3k27ac_plot_Tollrm910 = fancplot.LinePlot(
        h3k27ac_dict['Tollrm910'],
        fill=True,
        plot_kwargs={'color': "#dc267f"},
        draw_minor_ticks=False,
        aspect=0.05,
        ylim=h3k27ac_ylim,
        n_yticks=2)

    rnaseq_plot_toll10b = fancplot.LinePlot(rnaseq_dict['tl10b'],
                                            fill=True,
                                            plot_kwargs={'color': "#ffb000"},
                                            draw_minor_ticks=False,
                                            aspect=0.05,
                                            n_yticks=2)

    h3k27ac_plot_toll10b = fancplot.LinePlot(h3k27ac_dict['tl10b'],
                                             fill=True,
                                             plot_kwargs={'color': "#ffb000"},
                                             draw_minor_ticks=False,
                                             aspect=0.05,
                                             ylim=h3k27ac_ylim,
                                             n_yticks=2)

    gd7_enh = "data/supplementary_tables/gd7_candidate_enhancers.bed"
    gd7_enh_plot = fancplot.GenomicFeaturePlot(gd7_enh,
                                               aspect=0.02,
                                               color="#648fff",
                                               draw_minor_ticks=False)

    Tollrm910_enh = "data/supplementary_tables/Tollrm910_candidate_enhancers.bed"
    Tollrm910_enh_plot = fancplot.GenomicFeaturePlot(Tollrm910_enh,
                                                     aspect=0.02,
                                                     color="#dc267f",
                                                     draw_minor_ticks=False)

    toll10b_enh = "data/supplementary_tables/Toll10B_candidate_enhancers.bed"
    toll10b_enh_plot = fancplot.GenomicFeaturePlot(toll10b_enh,
                                                   aspect=0.02,
                                                   color="#ffb000",
                                                   draw_minor_ticks=False)

    plots = [
        h_plot,
        # ins_plot,
        # boundaries_plot,
        genes_plot,
        # hk_plot,
        # polii_early_plot, polii_mid_plot,
        polii_late_plot,
        rnaseq_plot_gd7,
        rnaseq_plot_Tollrm910,
        rnaseq_plot_toll10b,
        h3k27ac_plot_gd7,
        h3k27ac_plot_Tollrm910,
        h3k27ac_plot_toll10b,
        gd7_enh_plot,
        Tollrm910_enh_plot,
        toll10b_enh_plot
    ]

    with PdfPages(output_file) as pdf:
        with fancplot.GenomicFigure(plots, ticks_last=True) as gfig:
            for name, region, rnaseq_ylim in regions:
                logging.info(region)
                fig, axes = gfig.plot(region)
                axes[3].set_ylim([0, rnaseq_ylim])
                axes[4].set_ylim([0, rnaseq_ylim])
                axes[5].set_ylim([0, rnaseq_ylim])
                pdf.savefig()
# Donut O/E values
p_oe_d = fancplot.TriangularMatrixPlot(loop_info,
                                       vmin=0,
                                       vmax=4,
                                       weight_field='oe_d',
                                       colormap='Reds',
                                       max_dist=600000)
# Donut FDR values
p_fdr_d = fancplot.TriangularMatrixPlot(loop_info,
                                        vmin=0,
                                        vmax=0.1,
                                        weight_field='fdr_d',
                                        colormap='binary_r',
                                        max_dist=600000)

gf = fancplot.GenomicFigure([p_hic, p_oe_d, p_fdr_d], ticks_last=True)
fig, axes = gf.plot('chr11:77.4mb-78.6mb')
# end snippet loops matrix
fig.savefig("../docsrc/api/analyse/images/loops_annotate.png")
plt.close(fig)

# start snippet loops filters
# filter on O/E
enrichment_filter = fanc.peaks.EnrichmentPeakFilter(enrichment_ll_cutoff=1.75,
                                                    enrichment_d_cutoff=3,
                                                    enrichment_h_cutoff=2,
                                                    enrichment_v_cutoff=2)
loop_info.filter(enrichment_filter, queue=True)

# filter on FDR
fdr_filter = fanc.peaks.FdrPeakFilter(fdr_ll_cutoff=0.05,