def solve(): even_char = re.compile("0|2|4|6|8") sum_all = 0 count = 0 for i in primes_in_range(9,1000000,2): s = str(i) if '0' in s: continue # if even_char.search(s): # continue # else: flag = True for sub in truncl(s): if not isprime(int(sub)): flag = False break if flag: for sub in truncr(s): if not isprime(int(sub)): flag = False break if flag: count += 1 sum_all += i print '*** PING *** ', i print "Answer: first %i primes add up to %i" % (count, sum_all)
def solve_twodigit(): for n in xrange(99*99, 1, -1): ## if n < 9000: ## break if ispalindrome(n) and not isprime(n): # print 'checking',n for x in factors(n): if x <= 99 and x >= 10 and n / x > 10 and n / x < 99: print n, ':', x, '*', n / x break
def solve(): c = 0 for n in primes_in_range(2, 1000000, 1): flag = True for r in rots(n): if not isprime(r): flag = False break if flag: c += 1 print "%i (%i)" % (n, c)
def solve(): n = 1 s = 0 start = time() while n < 1000000: # if n % 10000 == 0: print n, if n%2 == 0 or n%3 == 0: n+=1 continue if isprime(n): print n s += n n+=1 print s print 'finished in %f seconds' % (time() - start)
""" 2007-12-16 By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13. What is the 10001st prime number? """ import psyco psyco.full() from fast_prime import isprime c = 0 n = 1 while c < 10001: if isprime(n): c += 1 n += 1 print n-1
e.g. |11| = 11 and |-4| = 4 Find the product of the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with n = 0. """ import psyco; psyco.full() from fast_prime import isprime ##for n in range(80): ## res = n**2 + (-1000 * n) - 999 ## print n, res, isprime(abs(res)) result = ((0, 0),0) rng = 1000 for a in range(-rng,rng): for b in range(-rng,rng): n = 0 while isprime(abs(n**2 + (a * n) + b)): n += 1 if n > result[1]: result = (a, b), n if a % 50 == 0: print a, result print print '==== FINAL ====' print result ## ==== FINAL ==== ## ((-61, 971), 71)
def check(n): if not isprime(n): return 1 c = 1 while (((10 ** c) - 1) % n) != 0 and c < n: c += 1 return c
""" 2007-12-14 The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 317584931803? >>> for x in factors(13195): ... if isprime(x): ... print '%i,'%x , 5, 7, 13, 29, """ from fast_prime import factors, isprime for x in factors(317584931803): if isprime(x): print "%i," % x, # 1, 67, 829, 1459, 3919