Exemple #1
0
def sepconv2d(cin, cout=None, ksize=3, stride=1, padding=None, affine=True):
    if cout is None: cout = cin
    if padding is None: padding = ksize // 2
    layer = nn.Sequential(
        nn.ReLU(inplace=False),
        init_default(
            nn.Conv2d(cin,
                      cin,
                      ksize,
                      stride=stride,
                      padding=padding,
                      groups=cin,
                      bias=False), nn.init.kaiming_normal_),
        init_default(nn.Conv2d(cin, cin, 1, padding=0, bias=False),
                     nn.init.kaiming_normal_),
        nn.BatchNorm2d(cin, affine=affine), nn.ReLU(inplace=False),
        init_default(
            nn.Conv2d(cin,
                      cin,
                      ksize,
                      stride=1,
                      padding=padding,
                      groups=cin,
                      bias=False), nn.init.kaiming_normal_),
        init_default(nn.Conv2d(cin, cout, 1, padding=0, bias=False),
                     nn.init.kaiming_normal_),
        nn.BatchNorm2d(cout, affine=affine))
    return layer
Exemple #2
0
    def __init__(self):
        super().__init__()
        self.learn = None

        # train_button = gui.button(self.controlArea, self, "开始训练", callback=self.train)
        self.label = gui.label(self.mainArea, self, "模型结构")

        #: The current evaluating task (if any)
        self._task = None  # type: Optional[Task]
        #: An executor we use to submit learner evaluations into a thread pool
        self._executor = ThreadExecutor()

        self.model = nn.Sequential(
            self.conv(1, 8),  # 14
            nn.BatchNorm2d(8),
            nn.ReLU(),
            self.conv(8, 16),  # 7
            nn.BatchNorm2d(16),
            nn.ReLU(),
            self.conv(16, 32),  # 4
            nn.BatchNorm2d(32),
            nn.ReLU(),
            self.conv(32, 16),  # 2
            nn.BatchNorm2d(16),
            nn.ReLU(),
            self.conv(16, 10),  # 1
            nn.BatchNorm2d(10),
            Flatten()  # remove (1,1) grid
        )
Exemple #3
0
 def __init__(self, num_classes=10):
     super(ConvNet, self).__init__()
     self.layer1 = nn.Sequential(
         nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
         nn.BatchNorm2d(16),
         nn.ReLU(),
         nn.MaxPool2d(kernel_size=2, stride=2))
     self.layer2 = nn.Sequential(
         nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
         nn.BatchNorm2d(32),
         nn.ReLU(),
         nn.MaxPool2d(kernel_size=2, stride=2))
     self.fc = nn.Linear(7 * 7 * 32, num_classes)
Exemple #4
0
    def __init__(self,
                 block,
                 layers,
                 num_classes=10,
                 zero_init_residual=False):
        super(MyResNet, self).__init__()
        self.inplanes = 64
        self.conv1 = nn.Conv2d(1,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(512 * block.expansion, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(256, num_classes),
        )
 def two_conv_pool(self, in_channels, f1, f2):
     s = nn.Sequential(
         nn.Conv2d(in_channels, f1, kernel_size=3, stride=1, padding=1),
         nn.BatchNorm2d(f1),
         nn.ReLU(inplace=True),
         nn.Conv2d(f1, f2, kernel_size=3, stride=1, padding=1),
         nn.BatchNorm2d(f2),
         nn.ReLU(inplace=True),
         nn.MaxPool2d(kernel_size=2, stride=2),
     )
     for m in s.children():
         if isinstance(m, nn.Conv2d):
             n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
             m.weight.data.normal_(0, math.sqrt(2. / n))
         elif isinstance(m, nn.BatchNorm2d):
             m.weight.data.fill_(1)
             m.bias.data.zero_()
     return s
Exemple #6
0
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)

        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
    def __init__(self, num_classes=10):
        super(VGG, self).__init__()
        self.l1 = self.two_conv_pool(1, 64, 64)
        self.l2 = self.two_conv_pool(64, 128, 128)
        self.l3 = self.three_conv_pool(128, 256, 256, 256)
        self.l4 = self.three_conv_pool(256, 256, 256, 256)

        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            nn.Linear(256, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(512, num_classes),
        )
Exemple #8
0
    def __init__(self):
        super().__init__()
        self.learn = None

        # train_button = gui.button(self.controlArea, self, "开始训练", callback=self.train)
        self.label = gui.label(self.mainArea, self, "模型结构")

        #: The current evaluating task (if any)
        self._task = None  # type: Optional[Task]
        #: An executor we use to submit learner evaluations into a thread pool
        self._executor = ThreadExecutor()

        # Device configuration
        self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

        # Hyper parameters
        num_epochs = 5
        num_classes = 10
        batch_size = 100
        learning_rate = 0.001

        dir_path = Path(__file__).resolve()
        data_path = f'{dir_path.parent.parent.parent}/datasets/'

        # MNIST dataset
        self.train_dataset = torchvision.datasets.MNIST(root=data_path,
                                                   train=True,
                                                   transform=transforms.ToTensor(),
                                                   download=False)

        self.test_dataset = torchvision.datasets.MNIST(root=data_path,
                                                  train=False,
                                                  transform=transforms.ToTensor())

        # Data loader
        self.train_loader = torch.utils.data.DataLoader(dataset=self.train_dataset,
                                                   batch_size=batch_size,
                                                   shuffle=False)

        self.test_loader = torch.utils.data.DataLoader(dataset=self.test_dataset,
                                                  batch_size=batch_size,
                                                  shuffle=False)

        # self.model = ConvNet(num_classes).to(self.device)
        self.model = nn.Sequential(
            self.conv(1, 8),  # 14
            nn.BatchNorm2d(8),
            nn.ReLU(),
            self.conv(8, 16),  # 7
            nn.BatchNorm2d(16),
            nn.ReLU(),
            self.conv(16, 32),  # 4
            nn.BatchNorm2d(32),
            nn.ReLU(),
            self.conv(32, 16),  # 2
            nn.BatchNorm2d(16),
            nn.ReLU(),
            self.conv(16, 10),  # 1
            nn.BatchNorm2d(10),
            Flatten()  # remove (1,1) grid
        ).to(self.device)

        # Loss and optimizer
        self.criterion = nn.CrossEntropyLoss()
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=learning_rate)