def sepconv2d(cin, cout=None, ksize=3, stride=1, padding=None, affine=True): if cout is None: cout = cin if padding is None: padding = ksize // 2 layer = nn.Sequential( nn.ReLU(inplace=False), init_default( nn.Conv2d(cin, cin, ksize, stride=stride, padding=padding, groups=cin, bias=False), nn.init.kaiming_normal_), init_default(nn.Conv2d(cin, cin, 1, padding=0, bias=False), nn.init.kaiming_normal_), nn.BatchNorm2d(cin, affine=affine), nn.ReLU(inplace=False), init_default( nn.Conv2d(cin, cin, ksize, stride=1, padding=padding, groups=cin, bias=False), nn.init.kaiming_normal_), init_default(nn.Conv2d(cin, cout, 1, padding=0, bias=False), nn.init.kaiming_normal_), nn.BatchNorm2d(cout, affine=affine)) return layer
def __init__(self): super().__init__() self.learn = None # train_button = gui.button(self.controlArea, self, "开始训练", callback=self.train) self.label = gui.label(self.mainArea, self, "模型结构") #: The current evaluating task (if any) self._task = None # type: Optional[Task] #: An executor we use to submit learner evaluations into a thread pool self._executor = ThreadExecutor() self.model = nn.Sequential( self.conv(1, 8), # 14 nn.BatchNorm2d(8), nn.ReLU(), self.conv(8, 16), # 7 nn.BatchNorm2d(16), nn.ReLU(), self.conv(16, 32), # 4 nn.BatchNorm2d(32), nn.ReLU(), self.conv(32, 16), # 2 nn.BatchNorm2d(16), nn.ReLU(), self.conv(16, 10), # 1 nn.BatchNorm2d(10), Flatten() # remove (1,1) grid )
def __init__(self, num_classes=10): super(ConvNet, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2)) self.fc = nn.Linear(7 * 7 * 32, num_classes)
def __init__(self, block, layers, num_classes=10, zero_init_residual=False): super(MyResNet, self).__init__() self.inplanes = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) self.classifier = nn.Sequential( nn.Dropout(p=0.5), nn.Linear(512 * block.expansion, 256), nn.BatchNorm1d(256), nn.ReLU(inplace=True), nn.Dropout(p=0.5), nn.Linear(256, num_classes), )
def two_conv_pool(self, in_channels, f1, f2): s = nn.Sequential( nn.Conv2d(in_channels, f1, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(f1), nn.ReLU(inplace=True), nn.Conv2d(f1, f2, kernel_size=3, stride=1, padding=1), nn.BatchNorm2d(f2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), ) for m in s.children(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() return s
def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride
def __init__(self, num_classes=10): super(VGG, self).__init__() self.l1 = self.two_conv_pool(1, 64, 64) self.l2 = self.two_conv_pool(64, 128, 128) self.l3 = self.three_conv_pool(128, 256, 256, 256) self.l4 = self.three_conv_pool(256, 256, 256, 256) self.classifier = nn.Sequential( nn.Dropout(p=0.5), nn.Linear(256, 512), nn.BatchNorm1d(512), nn.ReLU(inplace=True), nn.Dropout(p=0.5), nn.Linear(512, num_classes), )
def __init__(self): super().__init__() self.learn = None # train_button = gui.button(self.controlArea, self, "开始训练", callback=self.train) self.label = gui.label(self.mainArea, self, "模型结构") #: The current evaluating task (if any) self._task = None # type: Optional[Task] #: An executor we use to submit learner evaluations into a thread pool self._executor = ThreadExecutor() # Device configuration self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Hyper parameters num_epochs = 5 num_classes = 10 batch_size = 100 learning_rate = 0.001 dir_path = Path(__file__).resolve() data_path = f'{dir_path.parent.parent.parent}/datasets/' # MNIST dataset self.train_dataset = torchvision.datasets.MNIST(root=data_path, train=True, transform=transforms.ToTensor(), download=False) self.test_dataset = torchvision.datasets.MNIST(root=data_path, train=False, transform=transforms.ToTensor()) # Data loader self.train_loader = torch.utils.data.DataLoader(dataset=self.train_dataset, batch_size=batch_size, shuffle=False) self.test_loader = torch.utils.data.DataLoader(dataset=self.test_dataset, batch_size=batch_size, shuffle=False) # self.model = ConvNet(num_classes).to(self.device) self.model = nn.Sequential( self.conv(1, 8), # 14 nn.BatchNorm2d(8), nn.ReLU(), self.conv(8, 16), # 7 nn.BatchNorm2d(16), nn.ReLU(), self.conv(16, 32), # 4 nn.BatchNorm2d(32), nn.ReLU(), self.conv(32, 16), # 2 nn.BatchNorm2d(16), nn.ReLU(), self.conv(16, 10), # 1 nn.BatchNorm2d(10), Flatten() # remove (1,1) grid ).to(self.device) # Loss and optimizer self.criterion = nn.CrossEntropyLoss() self.optimizer = torch.optim.Adam(self.model.parameters(), lr=learning_rate)