def __init__(self, pypinm, deps=None, import_nm=None, path=None): store_attr('pypinm,deps') self.import_nm = ifnone(import_nm, pypinm) try: self.ver = str(latest_pypi(pypinm)) except: raise ValueError(f'package name: {pypinm} not found on pypi.') self.info = pypi_json(f'{pypinm}/{self.ver}')['info'] self.path = _mkdir(ifnone(path, self.pypinm)) self.meta = { 'package': { 'name': self.pypinm, 'version': self.ver }, 'build': { 'number': 0, 'binary_relocation': False, 'detect_binary_files_with_prefix': False }, 'requirements': { 'host': ['pip', 'python'], 'run': ['python'] + list(L(self.deps)) }, 'test': { 'imports': [self.import_nm], 'requires': ['pip'] }, 'about': { 'home': self.info['home_page'], 'summary': self.info['summary'], 'license': self.info['license'] }, 'extra': { 'recipe-maintainers': ['jph00'] } }
def tx(xs): return L(xs).map(list).map(set).reduce(lambda a, b: a | b)
def fit(self: Learner, epochs, lr, cbs, reset_opt=False, wd=None): """Default Fit 'self.model' for 'n_cycles' with 'lr' using 'cbs'. Optionally 'reset_opt'. For run from script with hydra config""" self.fit(epochs, lr, cbs=L(cbs), reset_opt=reset_opt, wd=wd)
def all_params(self, n=slice(None), with_grad=False): "List of `param_groups` upto n" res = L(p for p in self.param_lists[n]) return (L(o for o in res if hasattr(o, "grad") and o.grad is not None) if with_grad else res)
def xform(xs): l = L(xs).map(xform_item).filter(lambda x: x and x != "no other") return (l[0], l[1:])
def __init__(self, x, raw=False): if raw: self.t = x else: self.t = L(map(tuplify, x))
def part1(xs): xs = L(xs) row = walk(list(xs[0]), 0, 127) seat = walk(list(xs[1]), 0, 7) return row * 8 + seat
def logic(x, n): return L(combinations(x.col(), n)).filter(lambda x: sum(x) == 2020).map(prod)[0]
def _(self, other): self.logs.append(L(operator, other)) return self
def __init__(self, message): store_attr() self.logs = L()
def exec(itr): return L(f(e) for e in itr)
def __init__(self, default = _NoMatchError,): store_attr() self.cases = L() self.preprocesses = L()