def test():
    import os
    img_file = 'demo/images.jpeg'
    image = cv2.imread(img_file)

    #imdb_name = 'CaltechPedestrians_train'
    imdb_name = 'coco_2017_train'
    #imdb_name = 'voc_2007_trainval'
    imdb = get_imdb(imdb_name)
    cfg_file = 'experiments/cfgs/faster_rcnn_end2end.yml'
    model_dir = 'data/pretrained_model/'
    #pre_model_name = 'VGGnet_fast_rcnn_iter_70000.h5'
    pre_model_name = 'coco_2017_train_10_vgg16_0.7_b1.h5'
    #pre_model_name = 'CaltechPedestrians_train_1_vgg16_0.7_b1.h5'
    pretrained_model = model_dir + pre_model_name
    cfg_from_file(cfg_file)
    print(imdb.classes)
    if 'vgg16' in pre_model_name.split('_'):
        detector = FasterRCNN_VGG(classes=imdb.classes, debug=False)
    elif 'resnet50' in pre_model_name.split('_'):
        detector = FasterRCNN_RES(classes=imdb.classes, debug=False)
    else:
        detector = FasterRCNN_VGG(classes=imdb.classes, debug=False)
    network.load_net(pretrained_model, detector)
    detector.cuda()
    detector.eval()
    print('load model successfully!')

    blob = init_data(is_cuda=True)

    t = Timer()
    t.tic()

    dets, scores, classes = detector.detect(image,
                                            blob,
                                            thr=0.7,
                                            nms_thresh=0.3)
    runtime = t.toc()
    print('total spend: {}s'.format(runtime))

    im2show = np.copy(image)
    for i, det in enumerate(dets):
        det = tuple(int(x) for x in det)
        cv2.rectangle(im2show, det[0:2], det[2:4], (255, 205, 51), 2)
        cv2.putText(im2show, '%s: %.3f' % (classes[i], scores[i]), (det[0], det[1] + 15),\
                    cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), thickness=1)

    cv2.imwrite(os.path.join('demo', 'out.jpg'), im2show)
    cv2.imshow('demo', im2show)
    cv2.waitKey(0)
Exemple #2
0
    def __init__(self, classes, n_action_classes, n_action_nonagent_roles,
                 **kwargs):
        super(HoiModel, self).__init__()
        print "Constructing HOI Model"

        faster_rcnn_config = kwargs.get("faster_rcnn_config", None)
        if faster_rcnn_config is not None:
            cf.cfg_from_file(faster_rcnn_config)

        faster_rcnn_cle = kwargs.get("faster_rcnn_command_line", None)
        if faster_rcnn_cle is not None:
            cf.cfg_from_list(faster_rcnn_cle)

        assert(cf.cfg["NCLASSES"] == len(classes)), \
                "inconsistent FasterRCNN settings"

        self.detection_branch = FasterRCNN(classes=classes)

        self.human_centric_branch = HumanCentricBranch(
            n_action_classes, n_action_nonagent_roles)
        self.interaction_branch = InteractionBranch(n_action_nonagent_roles)
def process_img_by_lib(path):
    cfg_file = 'experiments/cfgs/faster_rcnn_end2end.yml'
    cfg_from_file(cfg_file)
    if cfg.IMAGE_PROCESS_LIB == 'cv2':
        imread = cv2.imread
        RGB2BGR = False
    elif cfg.IMAGE_PROCESS_LIB == 'sci':
        # this is same with PIL
        imread = sciImread
        RGB2BGR = True
    else:
        print("IMAGE PROCESS LIB IS NOT DEFINED")
        raise ModuleNotFoundError
    im = imread(path)

    if len(im.shape) == 2:
        im = im[:, :, np.newaxis]
        im = np.concatenate((im, im, im), axis=2)
    # flip the channel, since the original one using cv2
    # rgb -> bgr
    if RGB2BGR:
        im = im[:, :, ::-1]

    return im
Exemple #4
0
lr_decay_steps = {60000, 80000}
lr_decay = 1./10

rand_seed = 1024
_DEBUG = True
use_tensorboard = False
remove_all_log = False   # remove all historical experiments in TensorBoard
exp_name = None # the previous experiment name in TensorBoard

# ------------

if rand_seed is not None:
    np.random.seed(rand_seed)

# load config
cfg_from_file(cfg_file)
lr = cfg.TRAIN.LEARNING_RATE
momentum = cfg.TRAIN.MOMENTUM
weight_decay = cfg.TRAIN.WEIGHT_DECAY
disp_interval = cfg.TRAIN.DISPLAY
log_interval = cfg.TRAIN.LOG_IMAGE_ITERS

# load data
imdb = VisualGenome(split=0, num_im=50)
roidb = imdb.roidb
data_layer = RoIDataLayer(roidb, imdb.num_classes)

# load net
net = FasterRCNN(classes=imdb.classes, debug=_DEBUG)
network.weights_normal_init(net, dev=0.01)
network.load_net(pretrained_model, net)
lr_decay_steps = {60000, 80000}
lr_decay = 1./10

rand_seed = 1024
_DEBUG = True
use_tensorboard = False
remove_all_log = False   # remove all historical experiments in TensorBoard
exp_name = None # the previous experiment name in TensorBoard

# ------------

if rand_seed is not None:
    np.random.seed(rand_seed)

# load config
cfg_from_file(cfg_file) # overrides default config params
lr = cfg.TRAIN.LEARNING_RATE
momentum = cfg.TRAIN.MOMENTUM
weight_decay = cfg.TRAIN.WEIGHT_DECAY
disp_interval = cfg.TRAIN.DISPLAY
log_interval = cfg.TRAIN.LOG_IMAGE_ITERS

# load data
imdb = get_imdb(imdb_name)
rdl_roidb.prepare_roidb(imdb)
roidb = imdb.roidb
data_layer = RoIDataLayer(roidb, imdb.num_classes)

# load net
net = FasterRCNN(classes=imdb.classes, debug=_DEBUG)
network.weights_normal_init(net, dev=0.01)
def test():
    import os
    imdb_name = 'CaltechPedestrians_test'
    imdb = get_imdb(imdb_name)
    cfg_file = 'experiments/cfgs/faster_rcnn_end2end.yml'
    model_dir = 'data/pretrained_model/'
    pre_model_name = 'CaltechPedestrians_train_10_vgg16_0.7_b3.h5'
    pretrained_model = model_dir + pre_model_name
    cfg_from_file(cfg_file)

    if 'vgg16' in pre_model_name.split('_'):
        detector = FasterRCNN_VGG(classes=imdb.classes, debug=False)
    elif 'res' in pre_model_name.split('_'):
        detector = FasterRCNN_RES(classes=imdb.classes, debug=False)
    else:
        detector = FasterRCNN_VGG(classes=imdb.classes, debug=False)

    network.load_net(pretrained_model, detector)
    detector.cuda()
    detector.eval()
    print('load model successfully!')
    blob = init_data(is_cuda=True)

    t = Timer()
    t.tic()
    cap = cv2.VideoCapture(video_file)
    init = True
    while (cap.isOpened()):
        ret, frame = cap.read()
        if ret:
            p = Timer()
            p.tic()
            if init:
                cnt = 1
                fourcc = cv2.VideoWriter_fourcc(*'XVID')
                out = cv2.VideoWriter(output_file, fourcc, fps,
                                      (frame.shape[1], frame.shape[0]))
                init = False
            try:
                dets, scores, classes = detector.detect(frame,
                                                        blob,
                                                        thr=0.7,
                                                        nms_thresh=0.3)
                frame = np.copy(frame)
                for i, det in enumerate(dets):
                    det = tuple(int(x) for x in det)
                    cv2.rectangle(frame, det[0:2], det[2:4], (255, 205, 51), 2)
                    # cv2.putText(frame, '%s: %.3f' % (classes[i], scores[i]), (det[0], det[1] + 15), \
                    #             cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), thickness=1)
                cv2.imshow('demo', frame)
                cv2.waitKey(1000)
                cv2.destroyAllWindows()
            except IndexError as e:
                pass
            finally:
                print(cnt, '-frame : {:.3f}s'.format(p.toc()))
                cnt += 1
                out.write(frame)
        else:
            break
    runtime = t.toc()
    print('{} frames  /  total spend: {}s  /  {:2.1f} fps'.format(
        cnt, int(runtime), cnt / runtime))
    cap.release()
    out.release()
Exemple #7
0
def track():
    def id_track(dataset, features):
        from collections import Counter
        def dist(f1, f2):
            score = (torch.sqrt((f1 - f2) ** 2)).sum(0).data.cpu().numpy()[0]
            return score

        id_list = []
        id_count = {'f' + str(i): [] for i in range(len(features))}
        for dataframe in dataset:
            for i, f in enumerate(features):
                init_val = 1e15
                for data in dataframe:
                    score = dist(f, data['feature'])
                    if score < init_val:
                        init_val = score
                        id = data['id']
                id_count['f' + str(i)].append(id)
        for list in id_count.values():
            c1 = Counter(list)
            most_id = c1.most_common(1)[0][0]
            id_list.append(most_id)
        return id_list
    import os
    imdb_name = 'CaltechPedestrians_test'
    imdb = get_imdb(imdb_name)
    cfg_file = 'experiments/cfgs/faster_rcnn_end2end.yml'
    model_dir = 'data/pretrained_model/'
    pre_model_name = 'CaltechPedestrians_train_2_vgg16_0.7_b3.h5'
    pretrained_model = model_dir + pre_model_name
    cfg_from_file(cfg_file)
    name_blocks = pre_model_name.split('_')
    if 'vgg16' in name_blocks:
        detector = FasterRCNN_VGG(classes=imdb.classes, debug=False)
    elif 'resnet50' in name_blocks:
        detector = FasterRCNN_RES(classes=imdb.classes, debug=False)
    else:
        detector = FasterRCNN_VGG(classes=imdb.classes, debug=False)
    relu = True if 'relu' in name_blocks else False
    network.load_net(pretrained_model, detector)
    detector.cuda()
    detector.eval()
    print('load model successfully!')

    blob = init_data(is_cuda=True)

    t = Timer()
    t.tic()
    cap = cv2.VideoCapture(video_file)
    init = True
    while (cap.isOpened()):
        ret, frame = cap.read()
        if ret:
            p = Timer()
            p.tic()

            if init:
                cnt = 1
                fourcc = cv2.VideoWriter_fourcc(*'XVID')
                out = cv2.VideoWriter(output_file, fourcc, fps, (frame.shape[1], frame.shape[0]))
                init = False
            try:
                # detect
                tid = (cnt-1) % tps
                dets, scores, classes = detector.detect(frame, blob, thr=0.7, nms_thresh=0.3)
                frame = np.copy(frame)
                # feature extraction
                features = []
                for i, det in enumerate(dets):
                    gt_box = det[np.newaxis,:]
                    features.append(detector.extract_feature_vector(frame, blob, gt_box, relu=relu))
                    det = tuple(int(x) for x in det)
                    cv2.rectangle(frame, det[0:2], det[2:4], (255, 205, 51), 2)
                dataframe = []
                if tid == 0:
                    dataset = []
                    for i, f in enumerate(features):
                        data = {}
                        data['id'] = i
                        data['feature'] = f
                        dataframe.append(data)
                    dataset.append(dataframe)
                    anchors = dets
                elif tid > 0 and tid < tps-1:
                    overlaps = bbox_overlaps(np.ascontiguousarray(anchors, dtype=np.float) \
                                             , np.ascontiguousarray(dets, dtype=np.float))
                    # max : K max overlaps score about N dets
                    overlaps = np.multiply(overlaps, overlaps > 0.7)
                    max_arg = overlaps.argmax(axis=0)
                    for i, arg in enumerate(max_arg):
                        if arg >= len(features):
                            continue
                        data = {}
                        data['id'] = arg
                        data['feature'] = features[arg]
                        dataframe.append(data)
                    dataset.append(dataframe)
                    anchors = dets
                else:
                    id_list = id_track(dataset, features)
                    for i, id in enumerate(id_list):
                        det = tuple(int(x)-2 for x in dets[i])
                        cv2.putText(frame, 'id: ' + str(id), det[0:2], cv2.FONT_HERSHEY_PLAIN, 2.0, (0, 0, 255))
                    # cv2.imshow('demo', frame)
                    # cv2.waitKey(1000)
                    # cv2.destroyAllWindows()
            except:
                pass
            finally:
                if cnt % 10 == 0:
                    print(cnt,'-frame : {:.3f}s'.format(p.toc()))
                cnt += 1
                out.write(frame)
        else:
            break
    runtime = t.toc()
    print('{} frames  /  total spend: {}s  /  {:2.1f} fps'.format(cnt, int(runtime), cnt/runtime))
    cap.release()
    out.release()