Exemple #1
0
def finetune_model(model, epochs, batch_size, max_train_steps_per_epoch, save_dir):
    train_data, test_data = load_data()
    train_data = train_data.split(0.1)
    pipeline = fe.Pipeline(train_data=train_data,
                           eval_data=test_data,
                           batch_size=batch_size,
                           ops=[
                               ToFloat(inputs="x", outputs="x"),
                           ])

    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=["y_pred", "y"], outputs="ce"),
        UpdateOp(model=model, loss_name="ce")
    ])

    traces = [
        Accuracy(true_key="y", pred_key="y_pred"),
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             max_train_steps_per_epoch=max_train_steps_per_epoch)
    estimator.fit()
def get_estimator(epochs=10, batch_size=32, train_steps_per_epoch=None):
    train_data, eval_data = cifair10.load_data()

    pipeline = fe.Pipeline(train_data=train_data,
                           eval_data=eval_data,
                           batch_size=batch_size,
                           ops=[Normalize(inputs="x", outputs="x")])

    # step 2
    model = fe.build(model_fn=lambda: LeNet(input_shape=(32, 32, 3)),
                     optimizer_fn="adam")
    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce"),
        UpdateOp(model=model, loss_name="ce")
    ])
    # step 3
    traces = [
        Accuracy(true_key="y", pred_key="y_pred"),
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             train_steps_per_epoch=train_steps_per_epoch)
    return estimator
def get_estimator(epochs=10, batch_size=32, extend_ds=False):
    train_data, eval_data = cifair10.load_data()

    if extend_ds:
        train_data = ExtendDataset(dataset=train_data,
                                   spoof_length=len(train_data) * 2)
        epochs //= 2

    pipeline = fe.Pipeline(train_data=train_data,
                           eval_data=eval_data,
                           batch_size=batch_size,
                           ops=[Normalize(inputs="x", outputs="x")])

    # step 2
    model = fe.build(model_fn=lambda: LeNet(input_shape=(32, 32, 3)),
                     optimizer_fn="adam")
    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce"),
        UpdateOp(model=model, loss_name="ce")
    ])
    # step 3
    traces = [
        Accuracy(true_key="y", pred_key="y_pred"),
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces)
    return estimator
Exemple #4
0
def pretrain_model(epochs, batch_size, max_train_steps_per_epoch, save_dir):
    # step 1: prepare dataset
    train_data, test_data = load_data()
    pipeline = fe.Pipeline(
        train_data=train_data,
        batch_size=batch_size,
        ops=[
            PadIfNeeded(min_height=40, min_width=40, image_in="x", image_out="x"),

            # augmentation 1
            RandomCrop(32, 32, image_in="x", image_out="x_aug"),
            Sometimes(HorizontalFlip(image_in="x_aug", image_out="x_aug"), prob=0.5),
            Sometimes(
                ColorJitter(inputs="x_aug", outputs="x_aug", brightness=0.8, contrast=0.8, saturation=0.8, hue=0.2),
                prob=0.8),
            Sometimes(ToGray(inputs="x_aug", outputs="x_aug"), prob=0.2),
            Sometimes(GaussianBlur(inputs="x_aug", outputs="x_aug", blur_limit=(3, 3), sigma_limit=(0.1, 2.0)),
                      prob=0.5),
            ToFloat(inputs="x_aug", outputs="x_aug"),

            # augmentation 2
            RandomCrop(32, 32, image_in="x", image_out="x_aug2"),
            Sometimes(HorizontalFlip(image_in="x_aug2", image_out="x_aug2"), prob=0.5),
            Sometimes(
                ColorJitter(inputs="x_aug2", outputs="x_aug2", brightness=0.8, contrast=0.8, saturation=0.8, hue=0.2),
                prob=0.8),
            Sometimes(ToGray(inputs="x_aug2", outputs="x_aug2"), prob=0.2),
            Sometimes(GaussianBlur(inputs="x_aug2", outputs="x_aug2", blur_limit=(3, 3), sigma_limit=(0.1, 2.0)),
                      prob=0.5),
            ToFloat(inputs="x_aug2", outputs="x_aug2")
        ])

    # step 2: prepare network
    model_con, model_finetune = fe.build(model_fn=ResNet9, optimizer_fn=["adam", "adam"])
    network = fe.Network(ops=[
        LambdaOp(lambda x, y: tf.concat([x, y], axis=0), inputs=["x_aug", "x_aug2"], outputs="x_com"),
        ModelOp(model=model_con, inputs="x_com", outputs="y_com"),
        LambdaOp(lambda x: tf.split(x, 2, axis=0), inputs="y_com", outputs=["y_pred", "y_pred2"]),
        NTXentOp(arg1="y_pred", arg2="y_pred2", outputs=["NTXent", "logit", "label"]),
        UpdateOp(model=model_con, loss_name="NTXent")
    ])

    # step 3: prepare estimator
    traces = [
        Accuracy(true_key="label", pred_key="logit", mode="train", output_name="contrastive_accuracy"),
        ModelSaver(model=model_con, save_dir=save_dir),
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             max_train_steps_per_epoch=max_train_steps_per_epoch,
                             monitor_names="contrastive_accuracy")
    estimator.fit()

    return model_con, model_finetune
Exemple #5
0
def get_estimator(epsilon=0.04,
                  epochs=10,
                  batch_size=32,
                  max_train_steps_per_epoch=None,
                  max_eval_steps_per_epoch=None,
                  save_dir=tempfile.mkdtemp()):
    # step 1
    train_data, eval_data = cifair10.load_data()
    test_data = eval_data.split(0.5)
    pipeline = fe.Pipeline(train_data=train_data,
                           eval_data=eval_data,
                           test_data=test_data,
                           batch_size=batch_size,
                           ops=[
                               Normalize(inputs="x",
                                         outputs="x",
                                         mean=(0.4914, 0.4822, 0.4465),
                                         std=(0.2471, 0.2435, 0.2616)),
                               ChannelTranspose(inputs="x", outputs="x"),
                           ])

    # step 2
    model = fe.build(model_fn=lambda: LeNet(input_shape=(3, 32, 32)),
                     optimizer_fn="adam")
    network = fe.Network(ops=[
        Watch(inputs="x"),
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="base_ce"),
        FGSM(data="x", loss="base_ce", outputs="x_adverse", epsilon=epsilon),
        ModelOp(model=model, inputs="x_adverse", outputs="y_pred_adv"),
        CrossEntropy(inputs=("y_pred_adv", "y"), outputs="adv_ce"),
        Average(inputs=("base_ce", "adv_ce"), outputs="avg_ce"),
        UpdateOp(model=model, loss_name="avg_ce")
    ])
    # step 3
    traces = [
        Accuracy(true_key="y", pred_key="y_pred", output_name="base accuracy"),
        Accuracy(true_key="y",
                 pred_key="y_pred_adv",
                 output_name="adversarial accuracy"),
        BestModelSaver(model=model,
                       save_dir=save_dir,
                       metric="adv_ce",
                       save_best_mode="min"),
    ]
    estimator = fe.Estimator(
        pipeline=pipeline,
        network=network,
        epochs=epochs,
        traces=traces,
        max_train_steps_per_epoch=max_train_steps_per_epoch,
        max_eval_steps_per_epoch=max_eval_steps_per_epoch,
        monitor_names=["base_ce", "adv_ce"])
    return estimator
def get_estimator(epochs=24, batch_size=128, lr_epochs=100, max_train_steps_per_epoch=None,
                  save_dir=tempfile.mkdtemp()):
    # step 1: prepare dataset
    train_data, test_data = load_data()
    pipeline = fe.Pipeline(
        train_data=train_data,
        eval_data=test_data,
        batch_size=batch_size,
        ops=[
            Normalize(inputs="x", outputs="x", mean=(0.4914, 0.4822, 0.4465), std=(0.2471, 0.2435, 0.2616)),
            PadIfNeeded(min_height=40, min_width=40, image_in="x", image_out="x", mode="train"),
            RandomCrop(32, 32, image_in="x", image_out="x", mode="train"),
            Sometimes(HorizontalFlip(image_in="x", image_out="x", mode="train")),
            CoarseDropout(inputs="x", outputs="x", mode="train", max_holes=1),
            ChannelTranspose(inputs="x", outputs="x"),
            Onehot(inputs="y", outputs="y", mode="train", num_classes=10, label_smoothing=0.2)
        ])

    # step 2: prepare network
    model = fe.build(model_fn=ResNet9, optimizer_fn="sgd")
    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce"),
        UpdateOp(model=model, loss_name="ce")
    ])

    # get the max learning rate
    lr_max = search_max_lr(pipeline=pipeline, model=model, network=network, epochs=lr_epochs)
    lr_min = lr_max / 40
    print(f"The maximum LR: {lr_max}, and minimun LR: {lr_min}")
    mid_step = int(epochs * 0.45 * len(train_data) / batch_size)
    end_step = int(epochs * len(train_data) / batch_size)

    # reinitialize the model
    model = fe.build(model_fn=ResNet9, optimizer_fn="sgd")
    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce"),
        UpdateOp(model=model, loss_name="ce")
    ])

    # step 3: prepare estimator
    traces = [
        Accuracy(true_key="y", pred_key="y_pred"),
        BestModelSaver(model=model, save_dir=save_dir, metric="accuracy", save_best_mode="max"),
        LRScheduler(model=model, lr_fn=lambda step: super_schedule(step, lr_max, lr_min, mid_step, end_step))
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             max_train_steps_per_epoch=max_train_steps_per_epoch)
    return estimator
Exemple #7
0
def get_estimator(epsilon=0.04,
                  epochs=20,
                  batch_size=32,
                  code_length=16,
                  train_steps_per_epoch=None,
                  eval_steps_per_epoch=None,
                  save_dir=tempfile.mkdtemp()):
    # step 1
    train_data, eval_data = cifair10.load_data()
    test_data = eval_data.split(0.5)
    pipeline = fe.Pipeline(
        train_data=train_data,
        eval_data=eval_data,
        test_data=test_data,
        batch_size=batch_size,
        ops=[
            Normalize(inputs="x", outputs="x", mean=(0.4914, 0.4822, 0.4465), std=(0.2471, 0.2435, 0.2616)),
            ChannelTranspose(inputs="x", outputs="x"),
            Hadamard(inputs="y", outputs="y_code", n_classes=10)
        ],
        num_process=0)

    # step 2
    model = fe.build(model_fn=lambda: EccLeNet(code_length=code_length), optimizer_fn="adam")
    network = fe.Network(ops=[
        Watch(inputs="x", mode=('eval', 'test')),
        ModelOp(model=model, inputs="x", outputs="y_pred_code"),
        Hinge(inputs=("y_pred_code", "y_code"), outputs="base_hinge"),
        UpdateOp(model=model, loss_name="base_hinge"),
        UnHadamard(inputs="y_pred_code", outputs="y_pred", n_classes=10, mode=('eval', 'test')),
        # The adversarial attack:
        FGSM(data="x", loss="base_hinge", outputs="x_adverse_hinge", epsilon=epsilon, mode=('eval', 'test')),
        ModelOp(model=model, inputs="x_adverse_hinge", outputs="y_pred_adv_hinge_code", mode=('eval', 'test')),
        Hinge(inputs=("y_pred_adv_hinge_code", "y_code"), outputs="adv_hinge", mode=('eval', 'test')),
        UnHadamard(inputs="y_pred_adv_hinge_code", outputs="y_pred_adv_hinge", n_classes=10, mode=('eval', 'test')),
    ])
    # step 3
    traces = [
        Accuracy(true_key="y", pred_key="y_pred", output_name="base_accuracy"),
        Accuracy(true_key="y", pred_key="y_pred_adv_hinge", output_name="adversarial_accuracy"),
        BestModelSaver(model=model, save_dir=save_dir, metric="base_hinge", save_best_mode="min", load_best_final=True)
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             train_steps_per_epoch=train_steps_per_epoch,
                             eval_steps_per_epoch=eval_steps_per_epoch,
                             monitor_names=["adv_hinge"])
    return estimator
def get_estimator(level,
                  num_augment,
                  epochs=24,
                  batch_size=512,
                  max_train_steps_per_epoch=None,
                  max_eval_steps_per_epoch=None):
    assert 0 <= level <= 10, "the level should be between 0 and 10"
    train_data, test_data = load_data()
    aug_ops = [
        OneOf(
            Rotate(level=level, inputs="x", outputs="x", mode="train"),
            Identity(level=level, inputs="x", outputs="x", mode="train"),
            AutoContrast(level=level, inputs="x", outputs="x", mode="train"),
            Equalize(level=level, inputs="x", outputs="x", mode="train"),
            Posterize(level=level, inputs="x", outputs="x", mode="train"),
            Solarize(level=level, inputs="x", outputs="x", mode="train"),
            Sharpness(level=level, inputs="x", outputs="x", mode="train"),
            Contrast(level=level, inputs="x", outputs="x", mode="train"),
            Color(level=level, inputs="x", outputs="x", mode="train"),
            Brightness(level=level, inputs="x", outputs="x", mode="train"),
            ShearX(level=level, inputs="x", outputs="x", mode="train"),
            ShearY(level=level, inputs="x", outputs="x", mode="train"),
            TranslateX(level=level, inputs="x", outputs="x", mode="train"),
            TranslateY(level=level, inputs="x", outputs="x", mode="train"),
        ) for _ in range(num_augment)
    ]
    pipeline = fe.Pipeline(train_data=train_data,
                           test_data=test_data,
                           batch_size=batch_size,
                           ops=aug_ops + [
                               Normalize(inputs="x",
                                         outputs="x",
                                         mean=(0.4914, 0.4822, 0.4465),
                                         std=(0.2471, 0.2435, 0.2616)),
                               ChannelTranspose(inputs="x", outputs="x"),
                           ])
    model = fe.build(model_fn=MyModel, optimizer_fn="adam")
    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce"),
        UpdateOp(model=model, loss_name="ce")
    ])
    estimator = fe.Estimator(
        pipeline=pipeline,
        network=network,
        epochs=epochs,
        traces=Accuracy(true_key="y", pred_key="y_pred"),
        max_train_steps_per_epoch=max_train_steps_per_epoch,
        max_eval_steps_per_epoch=max_eval_steps_per_epoch)
    return estimator
Exemple #9
0
    def test_saliency(self):
        fe.estimator.enable_deterministic(200)
        label_mapping = {
            'airplane': 0,
            'automobile': 1,
            'bird': 2,
            'cat': 3,
            'deer': 4,
            'dog': 5,
            'frog': 6,
            'horse': 7,
            'ship': 8,
            'truck': 9
        }

        batch_size = 32

        train_data, eval_data = cifair10.load_data()
        pipeline = fe.Pipeline(test_data=train_data,
                               batch_size=batch_size,
                               ops=[Normalize(inputs="x", outputs="x")],
                               num_process=0)

        weight_path = os.path.abspath(os.path.join(__file__, "..", "resources", "lenet_cifar10_tf.h5"))

        model = fe.build(model_fn=lambda: LeNet(input_shape=(32, 32, 3)), optimizer_fn="adam", weights_path=weight_path)
        network = fe.Network(ops=[ModelOp(model=model, inputs="x", outputs="y_pred")])

        save_dir = tempfile.mkdtemp()
        traces = [
            Saliency(model=model,
                     model_inputs="x",
                     class_key="y",
                     model_outputs="y_pred",
                     samples=5,
                     label_mapping=label_mapping),
            ImageSaver(inputs="saliency", save_dir=save_dir)
        ]

        estimator = fe.Estimator(pipeline=pipeline, network=network, epochs=5, traces=traces, log_steps=1000)
        estimator.test()

        ans_img_path = os.path.abspath(os.path.join(__file__, "..", "resources", "saliency_figure.png"))
        ans_img = img_to_rgb_array(ans_img_path)
        output_img_path = os.path.join(save_dir, "saliency_test_epoch_5.png")
        output_img = img_to_rgb_array(output_img_path)
        self.assertTrue(check_img_similar(output_img, ans_img))
Exemple #10
0
def finetune(weights_path,
             batch_size,
             epochs,
             model_dir=tempfile.mkdtemp(),
             train_steps_per_epoch=None,
             eval_steps_per_epoch=None):
    train_data, eval_data = cifair10.load_data()
    pipeline = fe.Pipeline(
        train_data=train_data,
        eval_data=eval_data,
        batch_size=batch_size,
        ops=[
            Normalize(inputs="x", outputs="x", mean=(0.4914, 0.4822, 0.4465), std=(0.2471, 0.2435, 0.2616)),
            PadIfNeeded(min_height=40, min_width=40, image_in="x", image_out="x", mode="train"),
            RandomCrop(32, 32, image_in="x", image_out="x", mode="train"),
            Sometimes(HorizontalFlip(image_in="x", image_out="x", mode="train")),
            CoarseDropout(inputs="x", outputs="x", mode="train", max_holes=1)
        ])
    _, model = fe.build(
        model_fn=lambda: vision_transformer(num_class=10,
                                            weights_path=weights_path,
                                            image_size=(32, 32, 3),
                                            patch_size=4,
                                            num_layers=6,
                                            em_dim=256,
                                            num_heads=8,
                                            dff=512),
        optimizer_fn=[None, lambda: tf.optimizers.SGD(0.01, momentum=0.9)])
    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce", from_logits=True),
        UpdateOp(model=model, loss_name="ce")
    ])
    traces = [
        Accuracy(true_key="y", pred_key="y_pred"),
        BestModelSaver(model=model, save_dir=model_dir, metric="accuracy", save_best_mode="max")
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             train_steps_per_epoch=train_steps_per_epoch,
                             eval_steps_per_epoch=eval_steps_per_epoch)
    estimator.fit(warmup=False)
def get_estimator(epochs=24, batch_size=512, max_train_steps_per_epoch=None, save_dir=tempfile.mkdtemp()):
    # step 1: prepare dataset
    train_data, test_data = load_data()
    pipeline = fe.Pipeline(
        train_data=train_data,
        test_data=test_data,
        batch_size=batch_size,
        ops=[
            Normalize(inputs="x", outputs="x", mean=(0.4914, 0.4822, 0.4465), std=(0.2471, 0.2435, 0.2616)),
            PadIfNeeded(min_height=40, min_width=40, image_in="x", image_out="x", mode="train"),
            RandomCrop(32, 32, image_in="x", image_out="x", mode="train"),
            Sometimes(HorizontalFlip(image_in="x", image_out="x", mode="train")),
            CoarseDropout(inputs="x", outputs="x", mode="train", max_holes=1),
            ChannelTranspose(inputs="x", outputs="x"),
            Onehot(inputs="y", outputs="y", mode="train", num_classes=10, label_smoothing=0.2)
        ])

    # step 2: prepare network
    model = fe.build(model_fn=FastCifar, optimizer_fn="adam")
    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce"),
        UpdateOp(model=model, loss_name="ce")
    ])

    # step 3 prepare estimator
    traces = [
        Accuracy(true_key="y", pred_key="y_pred"),
        BestModelSaver(model=model, save_dir=save_dir, metric="accuracy", save_best_mode="max"),
        LRScheduler(model=model, lr_fn=lr_schedule)
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             max_train_steps_per_epoch=max_train_steps_per_epoch)
    return estimator
def get_estimator(epochs=150,
                  batch_size=32,
                  save_dir=tempfile.mkdtemp(),
                  train_steps_per_epoch=None,
                  eval_steps_per_epoch=None):
    # step 1: prepare dataset
    train_data, eval_data = load_data()
    pipeline = fe.Pipeline(train_data=train_data,
                           eval_data=eval_data,
                           batch_size=batch_size * get_num_devices(),
                           ops=[
                               Normalize(inputs="x",
                                         outputs="x",
                                         mean=(0.4914, 0.4822, 0.4465),
                                         std=(0.2471, 0.2435, 0.2616)),
                               PadIfNeeded(min_height=40,
                                           min_width=40,
                                           image_in="x",
                                           image_out="x",
                                           mode="train"),
                               RandomCrop(32,
                                          32,
                                          image_in="x",
                                          image_out="x",
                                          mode="train"),
                               Sometimes(
                                   HorizontalFlip(image_in="x",
                                                  image_out="x",
                                                  mode="train")),
                               CoarseDropout(inputs="x",
                                             outputs="x",
                                             mode="train",
                                             max_holes=1)
                           ])

    # step 2: prepare network
    model = fe.build(
        model_fn=lambda: pyramidnet_cifar(inputs_shape=(32, 32, 3),
                                          depth=272,
                                          alpha=200,
                                          num_classes=10,
                                          bottleneck=True),
        optimizer_fn=lambda: tfa.optimizers.SGDW(
            weight_decay=0.0001, lr=0.1, momentum=0.9))

    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce", from_logits=True),
        UpdateOp(model=model, loss_name="ce")
    ])

    # step 3 prepare estimator
    traces = [
        Accuracy(true_key="y", pred_key="y_pred"),
        LRScheduler(model=model, lr_fn=lr_schedule),
        BestModelSaver(model=model,
                       save_dir=save_dir,
                       metric="accuracy",
                       save_best_mode="max")
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             train_steps_per_epoch=train_steps_per_epoch,
                             eval_steps_per_epoch=eval_steps_per_epoch)
    return estimator
Exemple #13
0
def finetune(pretrained_model,
             batch_size,
             epochs,
             model_dir=tempfile.mkdtemp(),
             train_steps_per_epoch=None,
             eval_steps_per_epoch=None):
    train_data, eval_data = cifair10.load_data()
    pipeline = fe.Pipeline(train_data=train_data,
                           eval_data=eval_data,
                           batch_size=batch_size,
                           ops=[
                               Normalize(inputs="x",
                                         outputs="x",
                                         mean=(0.4914, 0.4822, 0.4465),
                                         std=(0.2471, 0.2435, 0.2616)),
                               PadIfNeeded(min_height=40,
                                           min_width=40,
                                           image_in="x",
                                           image_out="x",
                                           mode="train"),
                               RandomCrop(32,
                                          32,
                                          image_in="x",
                                          image_out="x",
                                          mode="train"),
                               Sometimes(
                                   HorizontalFlip(image_in="x",
                                                  image_out="x",
                                                  mode="train")),
                               CoarseDropout(inputs="x",
                                             outputs="x",
                                             mode="train",
                                             max_holes=1),
                               ChannelTranspose(inputs="x", outputs="x")
                           ])
    model = fe.build(model_fn=lambda: ViTModel(num_classes=100,
                                               image_size=32,
                                               patch_size=4,
                                               num_layers=6,
                                               num_channels=3,
                                               em_dim=256,
                                               num_heads=8,
                                               ff_dim=512),
                     optimizer_fn=lambda x: torch.optim.SGD(
                         x, lr=0.01, momentum=0.9, weight_decay=1e-4))
    # load the encoder's weight
    if hasattr(model, "module"):
        model.module.vit_encoder.load_state_dict(
            pretrained_model.module.vit_encoder.state_dict())
    else:
        model.vit_encoder.load_state_dict(
            pretrained_model.vit_encoder.state_dict())
    network = fe.Network(ops=[
        ModelOp(model=model, inputs="x", outputs="y_pred"),
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce", from_logits=True),
        UpdateOp(model=model, loss_name="ce")
    ])
    traces = [
        Accuracy(true_key="y", pred_key="y_pred"),
        BestModelSaver(model=model,
                       save_dir=model_dir,
                       metric="accuracy",
                       save_best_mode="max")
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             train_steps_per_epoch=train_steps_per_epoch,
                             eval_steps_per_epoch=eval_steps_per_epoch)
    estimator.fit(warmup=False)
Exemple #14
0
from os import pipe

import fastestimator as fe
from fastestimator.dataset.data.cifair10 import load_data
from fastestimator.op.numpyop.meta import Sometimes
from fastestimator.op.numpyop.multivariate import HorizontalFlip, PadIfNeeded, RandomCrop
from fastestimator.op.numpyop.univariate import CoarseDropout, Normalize, Onehot

train_data, test_data = load_data()
pipeline = fe.Pipeline(train_data=train_data,
                       test_data=test_data,
                       batch_size={
                           "train": 128,
                           "test": 32
                       },
                       ops=[
                           Normalize(inputs="x",
                                     outputs="x",
                                     mean=(0.4914, 0.4822, 0.4465),
                                     std=(0.2471, 0.2435, 0.2616)),
                           PadIfNeeded(min_height=40,
                                       min_width=40,
                                       image_in="x",
                                       image_out="x",
                                       mode="train"),
                           RandomCrop(32,
                                      32,
                                      image_in="x",
                                      image_out="x",
                                      mode="train"),
                           Sometimes(
def pretrain_model(epochs, batch_size, train_steps_per_epoch, save_dir):
    train_data, test_data = load_data()
    pipeline = fe.Pipeline(
        train_data=train_data,
        batch_size=batch_size,
        ops=[
            PadIfNeeded(min_height=40,
                        min_width=40,
                        image_in="x",
                        image_out="x",
                        mode="train"),

            # augmentation 1
            RandomCrop(32, 32, image_in="x", image_out="x_aug"),
            Sometimes(HorizontalFlip(image_in="x_aug", image_out="x_aug"),
                      prob=0.5),
            Sometimes(ColorJitter(inputs="x_aug",
                                  outputs="x_aug",
                                  brightness=0.8,
                                  contrast=0.8,
                                  saturation=0.8,
                                  hue=0.2),
                      prob=0.8),
            Sometimes(ToGray(inputs="x_aug", outputs="x_aug"), prob=0.2),
            Sometimes(GaussianBlur(inputs="x_aug",
                                   outputs="x_aug",
                                   blur_limit=(3, 3),
                                   sigma_limit=(0.1, 2.0)),
                      prob=0.5),
            ChannelTranspose(inputs="x_aug", outputs="x_aug"),
            ToFloat(inputs="x_aug", outputs="x_aug"),

            # augmentation 2
            RandomCrop(32, 32, image_in="x", image_out="x_aug2"),
            Sometimes(HorizontalFlip(image_in="x_aug2", image_out="x_aug2"),
                      prob=0.5),
            Sometimes(ColorJitter(inputs="x_aug2",
                                  outputs="x_aug2",
                                  brightness=0.8,
                                  contrast=0.8,
                                  saturation=0.8,
                                  hue=0.2),
                      prob=0.8),
            Sometimes(ToGray(inputs="x_aug2", outputs="x_aug2"), prob=0.2),
            Sometimes(GaussianBlur(inputs="x_aug2",
                                   outputs="x_aug2",
                                   blur_limit=(3, 3),
                                   sigma_limit=(0.1, 2.0)),
                      prob=0.5),
            ChannelTranspose(inputs="x_aug2", outputs="x_aug2"),
            ToFloat(inputs="x_aug2", outputs="x_aug2")
        ])

    model_con = fe.build(model_fn=lambda: ResNet9OneLayerHead(length=128),
                         optimizer_fn="adam")
    network = fe.Network(ops=[
        LambdaOp(lambda x, y: torch.cat([x, y], dim=0),
                 inputs=["x_aug", "x_aug2"],
                 outputs="x_com"),
        ModelOp(model=model_con, inputs="x_com", outputs="y_com"),
        LambdaOp(lambda x: torch.chunk(x, 2, dim=0),
                 inputs="y_com",
                 outputs=["y_pred", "y_pred2"],
                 mode="train"),
        NTXentOp(arg1="y_pred",
                 arg2="y_pred2",
                 outputs=["NTXent", "logit", "label"],
                 mode="train"),
        UpdateOp(model=model_con, loss_name="NTXent")
    ])

    traces = [
        Accuracy(true_key="label",
                 pred_key="logit",
                 mode="train",
                 output_name="contrastive_accuracy"),
        ModelSaver(model=model_con, save_dir=save_dir)
    ]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces,
                             train_steps_per_epoch=train_steps_per_epoch)
    estimator.fit()

    return model_con
def get_estimator(epochs=12, batch_size=512, save_dir=tempfile.mkdtemp()):
    # epoch 1-10, train on cifair100,  epoch 11-end: train on cifar10
    cifair10_train, cifari10_test = cifair10.load_data()
    cifair100_train, _ = cifair100.load_data()
    train_ds = EpochScheduler({1: cifair100_train, 11: cifair10_train})
    pipeline = fe.Pipeline(train_data=train_ds,
                           test_data=cifari10_test,
                           batch_size=batch_size,
                           ops=[
                               Normalize(inputs="x",
                                         outputs="x",
                                         mean=(0.4914, 0.4822, 0.4465),
                                         std=(0.2471, 0.2435, 0.2616)),
                               PadIfNeeded(min_height=40,
                                           min_width=40,
                                           image_in="x",
                                           image_out="x",
                                           mode="train"),
                               RandomCrop(32,
                                          32,
                                          image_in="x",
                                          image_out="x",
                                          mode="train"),
                               Sometimes(
                                   HorizontalFlip(image_in="x",
                                                  image_out="x",
                                                  mode="train")),
                               CoarseDropout(inputs="x",
                                             outputs="x",
                                             mode="train",
                                             max_holes=1),
                               ChannelTranspose(inputs="x", outputs="x")
                           ])

    # step 2: prepare network
    backbone = fe.build(model_fn=lambda: Backbone(input_size=(3, 32, 32)),
                        optimizer_fn="adam")
    cls_head_cifar100 = fe.build(model_fn=lambda: Classifier(classes=100),
                                 optimizer_fn="adam")
    cls_head_cifar10 = fe.build(model_fn=lambda: Classifier(classes=10),
                                optimizer_fn="adam")
    # if you want to save the final cifar10 model, you can build a model then provide it to ModelSaver
    # final_model_cifar10 = fe.build(model_fn=lambda: MyModel(backbone, cls_head_cifar10), optimizer_fn=None)

    # epoch 1-10: train backbone and cls_head_cifar100, epoch 11-end: train cls_head_cifar10 only
    ModelOp_cls_head = EpochScheduler({
        1:
        ModelOp(model=cls_head_cifar100, inputs="feature", outputs="y_pred"),
        11:
        ModelOp(model=cls_head_cifar10, inputs="feature", outputs="y_pred"),
    })
    UpdateOp_backbone = EpochScheduler({
        1:
        UpdateOp(model=backbone, loss_name="ce"),
        11:
        None
    })
    UpdateOp_cls_head = EpochScheduler({
        1:
        UpdateOp(model=cls_head_cifar100, loss_name="ce"),
        11:
        UpdateOp(model=cls_head_cifar10, loss_name="ce")
    })
    network = fe.Network(ops=[
        ModelOp(model=backbone, inputs="x",
                outputs="feature"), ModelOp_cls_head,
        CrossEntropy(inputs=("y_pred", "y"), outputs="ce", from_logits=True),
        UpdateOp_backbone, UpdateOp_cls_head
    ])
    traces = [Accuracy(true_key="y", pred_key="y_pred")]
    estimator = fe.Estimator(pipeline=pipeline,
                             network=network,
                             epochs=epochs,
                             traces=traces)
    return estimator