Exemple #1
0
def test_nody():
    """ Checking end to end nbody
  """
    a0 = 0.1

    pm = ParticleMesh(BoxSize=bs, Nmesh=[nc, nc, nc], dtype='f4')
    grid = pm.generate_uniform_particle_grid(shift=0).astype(np.float32)
    solver = Solver(pm, Planck15, B=1)
    stages = np.linspace(0.1, 1.0, 10, endpoint=True)

    # Generate initial state with fastpm
    whitec = pm.generate_whitenoise(100, mode='complex', unitary=False)
    lineark = whitec.apply(lambda k, v: Planck15.get_pklin(
        sum(ki**2 for ki in k)**0.5, 0)**0.5 * v / v.BoxSize.prod()**0.5)
    statelpt = solver.lpt(lineark, grid, a0, order=1)
    finalstate = solver.nbody(statelpt, leapfrog(stages))
    final_cube = pm.paint(finalstate.X)

    # Same thing with flowpm
    tlinear = tf.expand_dims(np.array(lineark.c2r()), 0)
    state = tfpm.lpt_init(tlinear, a0, order=1)
    state = tfpm.nbody(state, stages, nc)
    tfread = pmutils.cic_paint(tf.zeros_like(tlinear), state[0]).numpy()

    assert_allclose(final_cube, tfread[0], atol=1.2)
Exemple #2
0
def test_solver():
    Plin = LinearPower(Planck15, redshift=0, transfer='EisensteinHu')
    solver = Solver(pm, Planck15, B=1)
    Q = pm.generate_uniform_particle_grid(shift=0)

    wn = solver.whitenoise(1234)
    dlin = solver.linear(wn, lambda k: Plin(k))

    state = solver.lpt(dlin, Q, a=1.0, order=2)

    dnonlin = solver.nbody(state, leapfrog([1.0]))

    dnonlin.save('nonlin')
Exemple #3
0
    def solve(pm):
        solver = Solver(pm, Planck15, B=1)
        q = numpy.array_split(Q, pm.comm.size)[pm.comm.rank]
        wn = solver.whitenoise(1234)
        dlin = solver.linear(wn, lambda k: Plin(k))

        state = solver.lpt(dlin, q, a=0.1, order=2)
        state = solver.nbody(state, leapfrog([0.1, 0.5, 1.0]))

        d = {}
        for key in 'X', 'P', 'F':
            d[key] = numpy.concatenate(pm.comm.allgather(getattr(state, key)),
                                       axis=0)
        return d
Exemple #4
0
    def __init__(self,
                 linear,
                 astart=0.1,
                 aend=1.0,
                 boost=2,
                 Nsteps=5,
                 cosmo=None):
        self.comm = linear.comm

        if cosmo is None:
            cosmo = linear.Plin.cosmo

        self.cosmo = cosmo

        # the linear density field mesh
        self.linear = linear

        self.attrs.update(linear.attrs)

        asteps = numpy.linspace(astart, aend, Nsteps)
        self.attrs['astart'] = astart
        self.attrs['aend'] = aend
        self.attrs['Nsteps'] = Nsteps
        self.attrs['asteps'] = asteps
        self.attrs['boost'] = boost

        solver = Solver(self.linear.pm, cosmology=self.cosmo, B=boost)
        Q = self.linear.pm.generate_uniform_particle_grid(shift=0.5)

        self.linear = linear

        dlin = self.linear.to_field(mode='complex')
        state = solver.lpt(dlin, Q, a=astart, order=2)
        state = solver.nbody(
            state,
            leapfrog(numpy.linspace(astart, aend, Nsteps + 1, endpoint=True)))

        H0 = 100.
        self.RSD = 1.0 / (H0 * aend * self.cosmo.efunc(1.0 / aend - 1))

        self._size = len(Q)
        CatalogSource.__init__(self, comm=linear.comm, use_cache=False)

        self._csize = self.comm.allreduce(self._size)

        self['Displacement'] = state.S
        self['InitialPosition'] = state.Q
        self['ConjugateMomentum'] = state.P  # a ** 2  / H0 dx / dt
Exemple #5
0
def test_solver(comm):
    pm = ParticleMesh(BoxSize=512., Nmesh=[8, 8, 8], comm=comm)
    solver = Solver(pm, Planck15, B=1)

    P_prm = Planck15.Primordial.get_pkprim

    tf = get_species_transfer_function_from_class(Planck15, 9)

    Q = pm.generate_uniform_particle_grid(shift=0)

    wn = solver.whitenoise(1234)
    prm = solver.primordial(wn, P_prm)
    ic = solver.lpt(prm, {
                '0': (Baryon, tf['d_b'], tf['dd_b']),
                '1': (CDM, tf['d_cdm'], tf['dd_cdm']),
                '4': (NCDM, tf['d_ncdm[0]'], tf['dd_ncdm[0]']),
            }, Q, a=0.1)

    print('0', ic.species['0'].S[0], ic.species['0'].P[0], ic.species['0'].Q[0])
    print('1', ic.species['1'].S[0], ic.species['1'].P[0], ic.species['1'].Q[0])
    print('4', ic.species['4'].S[0], ic.species['4'].P[0], ic.species['4'].Q[0])

    c2 = CoreSolver(pm, Planck15, B=1)
    Pk = lambda k: Planck15.get_pk(k, z=0)
    dlin = c2.linear(wn, Pk)
    ic2 = c2.lpt(dlin, Q, 0.1, order=1)
    print(ic2.S[0], ic2.P[0], ic2.Q[0])
    final2 = c2.nbody(ic2, leapfrog([0.1, 1.0]))

    final = solver.nbody(ic, leapfrog([0.1, 1.0]))
    print('0', final.species['0'].F[0])
    print('1', final.species['1'].F[0])
    print('4', final.species['4'].F[0])
    print(final2.F[0])

    final.to_catalog()
Exemple #6
0
solver = Solver(pm, Planck15, B=2)
solver_ncdm = SolverNCDM(pm, Planck15, B=2)

wn = solver.whitenoise(400)
dlin = solver.linear(wn, EHPower(Planck15, 0))
lpt = solver.lpt(dlin, Q, stages[0])
#lpt.S = numpy.float32(lpt.S)


def monitor(action, ai, ac, af, state, event):
    if pm.comm.rank == 0:
        print(state.a['S'], state.a['P'], state.a['F'], state.S[0], state.P[0],
              action, ai, ac, af)


state1 = solver.nbody(lpt.copy(), leapfrog(stages), monitor=monitor)

state2 = solver_ncdm.nbody(lpt.copy(), leapfrog(stages), monitor=monitor)

if pm.comm.rank == 0:
    print('----------------')

cat1 = ArrayCatalog({'Position': state1.X}, BoxSize=pm.BoxSize, Nmesh=pm.Nmesh)
cat2 = ArrayCatalog({'Position': state2.X}, BoxSize=pm.BoxSize, Nmesh=pm.Nmesh)
r1 = FFTPower(cat1, mode='1d')
r2 = FFTPower(cat2, mode='1d')

cat1.save('NCDM/core', ('Position', ))
cat2.save('NCDM/ncdm', ('Position', ))
r1.save('NCDM/core-power.json')
r2.save('NCDM/ncdm-power.json')
Exemple #7
0
def gorfpael(stages): 
    # Reversed Leap-Frog
    stack = []
    for action, ai, ac, af in list(leapfrog(stages))[::-1]:
        if action == 'K':
            # need to pop the F before K to ensure the correct force is used.
            stack.append((action, af, ac, ai))
        elif action == 'F':
            yield action, af, ac, ai
            for item in stack:
                yield item
            stack = []
        else:
            yield action, af, ac, ai

state = solver.nbody(lpt.copy(), leapfrog(stages), monitor=monitor)
if pm.comm.rank == 0:
    print('----------------')
reverse = solver.nbody(state, gorfpael(stages), monitor=monitor)
#print((lpt.X - reverse.X).max())

assert_allclose(lpt.X, reverse.X)

cat1 = ArrayCatalog({'Position' : lpt.X}, BoxSize=pm.BoxSize, Nmesh=pm.Nmesh)
cat2 = ArrayCatalog({'Position' : reverse.X}, BoxSize=pm.BoxSize, Nmesh=pm.Nmesh)

cat1.save('Janus/Truth', ('Position',))
cat2.save('Janus/Reverse', ('Position',))

Exemple #8
0
            V = fac1 * V0 + fac2 * state.V

            #save the snapshot
            cat = ArrayCatalog({
                'Position': X,
                'Velocity': V
            },
                               BoxSize=state.pm.BoxSize)
            cat.save(
                args.save + '/FastPM_Nmesh%d_Nstep%d_z%.2f' %
                (args.Nmesh, args.Nstep, 1. / a - 1.),
                ('Position', 'Velocity'))
            del X, V
            if state.pm.comm.rank == 0:
                print(
                    'Finish writing snapshot at redshift %.2f' % (1. / a - 1.),
                    'Time:',
                    time.time() - t)

    a0 = np.array(af)
    X0 = state.X
    V0 = state.V

    if state.pm.comm.rank == 0:
        print('Finish redshift %.2f' % (1. / af - 1.), 'Time:',
              time.time() - t)


#run FastPM
state = solver.nbody(state, leapfrog(stages), monitor=monitor)
Exemple #9
0
                assert action == 'F'
                yield action, af, ac, ai
            stack = []
        elif action == 'F':
            # need to do F after D to ensure the time tag is right.
            assert ac == af
            stack.append((action, af, ai, ai))
        else:
            yield action, af, ac, ai

print(list(leapfrog(stages)))
print('----')
print(list(gorfpael(stages)))
print('++++')
print(list(leapfrog(stages[::-1])))

state = solver.nbody(lpt.copy(), leapfrog(stages), monitor=monitor)
if pm.comm.rank == 0:
    print('----------------')
reverse = solver.nbody(state, leapfrog(stages[::-1]), monitor=monitor)
#print((lpt.X - reverse.X).max())

assert_allclose(lpt.X, reverse.X)

cat1 = ArrayCatalog({'Position' : lpt.X}, BoxSize=pm.BoxSize, Nmesh=pm.Nmesh)
cat2 = ArrayCatalog({'Position' : reverse.X}, BoxSize=pm.BoxSize, Nmesh=pm.Nmesh)

cat1.save('Janus/Truth', ('Position',))
cat2.save('Janus/Reverse', ('Position',))

Exemple #10
0
dx1, dx2 = model.compute(['dx1', 'dx2'], init=dict(x=x))

print('model', dx1.std(axis=0), dx2.std(axis=0))
print('fastpm', dx1_f.std(axis=0), dx2_f.std(axis=0))
print('model', dx1[0], dx2[0])
print('fastpm', dx1_f[0], dx2_f[0])

print('comparing lpt dx and p ')
dx0, p0 = model.compute(['dx0', 'p0'], init=dict(x=x))
print('model', dx0.std(axis=0), p0.std(axis=0))
print('fastpm', lpt.S.std(axis=0), lpt.P.std(axis=0))

print('comparing single step')
lpt = solver.lpt(linear, Q=q, a=0.1)
state = solver.nbody(lpt, leapfrog([0.1]))
dx0, p0, f0 = model.compute(['dx0', 'p0', 'f0'], init=dict(x=x))
print('model', dx0.std(axis=0), p0.std(axis=0), f0.std(axis=0))
print('fastpm', state.S.std(axis=0), state.P.std(axis=0), state.F.std(axis=0))
print('model', dx0[0], p0[0], f0[0])
print('fastpm', state.S[0], state.P[0], state.F[0])

print('comparing multi step')
dx, p, f = model.compute(['dx', 'p', 'f'], init=dict(x=x))

lpt = solver.lpt(linear, Q=q, a=0.1)
state = solver.nbody(lpt, leapfrog([0.1, 0.6, 1.0]))
print('model', dx.std(axis=0), p.std(axis=0), f.std(axis=0))
print('fastpm', state.S.std(axis=0), state.P.std(axis=0), state.F.std(axis=0))

print('model', dx[0], p[0], f[0])
def func_gal_catalogue(bs, nc, seed, nstep, seed_hod, Omega_m, p_alpha,
                       p_logMin, p_logM1, p_logM0, p_sigma_logM):

    folder = "L%04d_N%04d_S%04d_%02dstep" % (bs, nc, seed, nstep)

    # setup initial conditions
    Omegacdm = Omega_m - 0.049,
    cosmo = cosmology.Planck15.clone(Omega_cdm=Omegacdm,
                                     h=0.6711,
                                     Omega_b=0.049)
    power = cosmology.LinearPower(cosmo, 0)
    klin = np.logspace(-4, 2, 1000)
    plin = power(klin)
    pkfunc = interpolate(klin, plin)

    # run the simulation
    pm = ParticleMesh(BoxSize=bs, Nmesh=[nc, nc, nc])
    Q = pm.generate_uniform_particle_grid()
    stages = numpy.linspace(0.1, 1.0, nstep, endpoint=True)
    solver = Solver(pm, cosmo, B=2)
    wn = solver.whitenoise(seed)
    dlin = solver.linear(wn, pkfunc)
    state = solver.lpt(dlin, Q, stages[0])
    state = solver.nbody(state, leapfrog(stages))

    # create the catalogue
    cat = ArrayCatalog(
        {
            'Position': state.X,
            'Velocity': state.V,
            'Displacement': state.S,
            'Density': state.RHO
        },
        BoxSize=pm.BoxSize,
        Nmesh=pm.Nmesh,
        M0=Omega_m * 27.75e10 * bs**3 / (nc / 2.0)**3)
    cat['KDDensity'] = KDDensity(cat).density
    cat.save('%s/Matter' % (folder),
             ('Position', 'Velocity', 'Density', 'KDDensity'))

    # run FOF
    fof = FOF(cat, linking_length=0.2, nmin=12)
    fofcat = fof.to_halos(particle_mass=cat.attrs['M0'],
                          cosmo=cosmo,
                          redshift=0.0)
    fofcat.save('%s/FOF' % (folder),
                ('Position', 'Velocity', 'Mass', 'Radius'))

    # run HOD
    params = {
        'alpha': p_alpha,
        'logMmin': p_logMin,
        'logM1': p_logM1,
        'logM0': p_logM0,
        'sigma_logM': p_sigma_logM
    }
    halos = HaloCatalog(fofcat, cosmo=cosmo, redshift=0.0, mdef='vir')
    halocat = halos.to_halotools(halos.attrs['BoxSize'])
    hod = HODCatalog(halocat, seed=seed_hod, **params)

    hod.save('%s/HOD' % (folder), ('Position', 'Velocity'))

    return folder, cat, fofcat, hod