Exemple #1
0
    def save_machine_learning_model_info(self):
        try:
            record = MLModel.get_or_none(MLModel.f_model_version == self.job_id,
                                         MLModel.f_role == self.role,
                                         MLModel.f_model_id == self.model_id,
                                         MLModel.f_party_id == self.party_id)
            if not record:
                job = Job.get_or_none(Job.f_job_id == self.job_id)
                pipeline = self.pipelined_model.read_pipeline_model()
                if job:
                    job_data = job.to_dict()
                    model_info = {
                        'job_id': job_data.get("f_job_id"),
                        'role': self.role,
                        'party_id': self.party_id,
                        'roles': job_data.get("f_roles"),
                        'model_id': self.model_id,
                        'model_version': self.model_version,
                        'initiator_role': job_data.get('f_initiator_role'),
                        'initiator_party_id': job_data.get('f_initiator_party_id'),
                        'runtime_conf': job_data.get('f_runtime_conf'),
                        'work_mode': job_data.get('f_work_mode'),
                        'train_dsl': job_data.get('f_dsl'),
                        'train_runtime_conf': job_data.get('f_train_runtime_conf'),
                        'size': self.get_model_size(),
                        'job_status': job_data.get('f_status'),
                        'parent': pipeline.parent,
                        'fate_version': pipeline.fate_version,
                        'runtime_conf_on_party': json_loads(pipeline.runtime_conf_on_party),
                        'parent_info': json_loads(pipeline.parent_info),
                        'inference_dsl': json_loads(pipeline.inference_dsl)
                    }
                    model_utils.save_model_info(model_info)

                    schedule_logger(self.job_id).info(
                        'save {} model info done. model id: {}, model version: {}.'.format(self.job_id,
                                                                                           self.model_id,
                                                                                           self.model_version))
                else:
                    schedule_logger(self.job_id).info(
                        'save {} model info failed, no job found in db. '
                        'model id: {}, model version: {}.'.format(self.job_id,
                                                                  self.model_id,
                                                                  self.model_version))
            else:
                schedule_logger(self.job_id).info('model {} info has already existed in database.'.format(self.job_id))
        except Exception as e:
            schedule_logger(self.job_id).exception(e)
Exemple #2
0
def operate_model(model_operation):
    request_config = request.json or request.form.to_dict()
    job_id = job_utils.generate_job_id()
    if model_operation not in [
            ModelOperation.STORE, ModelOperation.RESTORE,
            ModelOperation.EXPORT, ModelOperation.IMPORT
    ]:
        raise Exception(
            'Can not support this operating now: {}'.format(model_operation))
    required_arguments = ["model_id", "model_version", "role", "party_id"]
    check_config(request_config, required_arguments=required_arguments)
    request_config["model_id"] = gen_party_model_id(
        model_id=request_config["model_id"],
        role=request_config["role"],
        party_id=request_config["party_id"])
    if model_operation in [ModelOperation.EXPORT, ModelOperation.IMPORT]:
        if model_operation == ModelOperation.IMPORT:
            try:
                file = request.files.get('file')
                file_path = os.path.join(TEMP_DIRECTORY, file.filename)
                # if not os.path.exists(file_path):
                #     raise Exception('The file is obtained from the fate flow client machine, but it does not exist, '
                #                     'please check the path: {}'.format(file_path))
                try:
                    os.makedirs(os.path.dirname(file_path), exist_ok=True)
                    file.save(file_path)
                except Exception as e:
                    shutil.rmtree(file_path)
                    raise e
                request_config['file'] = file_path
                model = pipelined_model.PipelinedModel(
                    model_id=request_config["model_id"],
                    model_version=request_config["model_version"])
                model.unpack_model(file_path)

                pipeline = model.read_component_model('pipeline',
                                                      'pipeline')['Pipeline']
                train_runtime_conf = json_loads(pipeline.train_runtime_conf)
                permitted_party_id = []
                for key, value in train_runtime_conf.get('role', {}).items():
                    for v in value:
                        permitted_party_id.extend([v, str(v)])
                if request_config["party_id"] not in permitted_party_id:
                    shutil.rmtree(model.model_path)
                    raise Exception(
                        "party id {} is not in model roles, please check if the party id is valid."
                    )
                try:
                    adapter = JobRuntimeConfigAdapter(train_runtime_conf)
                    job_parameters = adapter.get_common_parameters().to_dict()
                    with DB.connection_context():
                        db_model = MLModel.get_or_none(
                            MLModel.f_job_id == job_parameters.get(
                                "model_version"),
                            MLModel.f_role == request_config["role"])
                    if not db_model:
                        model_info = model_utils.gather_model_info_data(model)
                        model_info['imported'] = 1
                        model_info['job_id'] = model_info['f_model_version']
                        model_info['size'] = model.calculate_model_file_size()
                        model_info['role'] = request_config["model_id"].split(
                            '#')[0]
                        model_info['party_id'] = request_config[
                            "model_id"].split('#')[1]
                        if model_utils.compare_version(
                                model_info['f_fate_version'], '1.5.1') == 'lt':
                            model_info['roles'] = model_info.get(
                                'f_train_runtime_conf', {}).get('role', {})
                            model_info['initiator_role'] = model_info.get(
                                'f_train_runtime_conf',
                                {}).get('initiator', {}).get('role')
                            model_info['initiator_party_id'] = model_info.get(
                                'f_train_runtime_conf',
                                {}).get('initiator', {}).get('party_id')
                            model_info[
                                'work_mode'] = adapter.get_job_work_mode()
                            model_info['parent'] = False if model_info.get(
                                'f_inference_dsl') else True
                        model_utils.save_model_info(model_info)
                    else:
                        stat_logger.info(
                            f'job id: {job_parameters.get("model_version")}, '
                            f'role: {request_config["role"]} model info already existed in database.'
                        )
                except peewee.IntegrityError as e:
                    stat_logger.exception(e)
                operation_record(request_config, "import", "success")
                return get_json_result()
            except Exception:
                operation_record(request_config, "import", "failed")
                raise
        else:
            try:
                model = pipelined_model.PipelinedModel(
                    model_id=request_config["model_id"],
                    model_version=request_config["model_version"])
                if model.exists():
                    archive_file_path = model.packaging_model()
                    operation_record(request_config, "export", "success")
                    return send_file(archive_file_path,
                                     attachment_filename=os.path.basename(
                                         archive_file_path),
                                     as_attachment=True)
                else:
                    operation_record(request_config, "export", "failed")
                    res = error_response(
                        response_code=210,
                        retmsg="Model {} {} is not exist.".format(
                            request_config.get("model_id"),
                            request_config.get("model_version")))
                    return res
            except Exception as e:
                operation_record(request_config, "export", "failed")
                stat_logger.exception(e)
                return error_response(response_code=210, retmsg=str(e))
    else:
        data = {}
        job_dsl, job_runtime_conf = gen_model_operation_job_config(
            request_config, model_operation)
        submit_result = DAGScheduler.submit(
            {
                'job_dsl': job_dsl,
                'job_runtime_conf': job_runtime_conf
            },
            job_id=job_id)
        data.update(submit_result)
        operation_record(data=job_runtime_conf,
                         oper_type=model_operation,
                         oper_status='')
        return get_json_result(job_id=job_id, data=data)
Exemple #3
0
def deploy(config_data):
    model_id = config_data.get('model_id')
    model_version = config_data.get('model_version')
    local_role = config_data.get('local').get('role')
    local_party_id = config_data.get('local').get('party_id')
    child_model_version = config_data.get('child_model_version')

    try:
        party_model_id = model_utils.gen_party_model_id(
            model_id=model_id, role=local_role, party_id=local_party_id)
        model = PipelinedModel(model_id=party_model_id,
                               model_version=model_version)
        model_data = model.collect_models(in_bytes=True)
        if "pipeline.pipeline:Pipeline" not in model_data:
            raise Exception("Can not found pipeline file in model.")

        # check if the model could be executed the deploy process (parent/child)
        if not check_before_deploy(model):
            raise Exception('Child model could not be deployed.')

        # copy proto content from parent model and generate a child model
        deploy_model = PipelinedModel(model_id=party_model_id,
                                      model_version=child_model_version)
        shutil.copytree(src=model.model_path, dst=deploy_model.model_path)
        pipeline = deploy_model.read_component_model('pipeline',
                                                     'pipeline')['Pipeline']

        # modify two pipeline files (model version/ train_runtime_conf)
        train_runtime_conf = json_loads(pipeline.train_runtime_conf)
        adapter = JobRuntimeConfigAdapter(train_runtime_conf)
        train_runtime_conf = adapter.update_model_id_version(
            model_version=deploy_model.model_version)
        pipeline.model_version = child_model_version
        pipeline.train_runtime_conf = json_dumps(train_runtime_conf, byte=True)

        parser = get_dsl_parser_by_version(
            train_runtime_conf.get('dsl_version', '1'))
        train_dsl = json_loads(pipeline.train_dsl)
        parent_predict_dsl = json_loads(pipeline.inference_dsl)

        if str(train_runtime_conf.get('dsl_version', '1')) == '1':
            predict_dsl = json_loads(pipeline.inference_dsl)
        else:
            if config_data.get('dsl') or config_data.get('predict_dsl'):
                predict_dsl = config_data.get('dsl') if config_data.get(
                    'dsl') else config_data.get('predict_dsl')
                if not isinstance(predict_dsl, dict):
                    predict_dsl = json_loads(predict_dsl)
            else:
                if config_data.get('cpn_list', None):
                    cpn_list = config_data.pop('cpn_list')
                else:
                    cpn_list = list(train_dsl.get('components', {}).keys())
                parser_version = train_runtime_conf.get('dsl_version', '1')
                if str(parser_version) == '1':
                    predict_dsl = parent_predict_dsl
                else:
                    parser = schedule_utils.get_dsl_parser_by_version(
                        parser_version)
                    predict_dsl = parser.deploy_component(cpn_list, train_dsl)

        #  save predict dsl into child model file
        parser.verify_dsl(predict_dsl, "predict")
        inference_dsl = parser.get_predict_dsl(
            role=local_role,
            predict_dsl=predict_dsl,
            setting_conf_prefix=file_utils.
            get_federatedml_setting_conf_directory())
        pipeline.inference_dsl = json_dumps(inference_dsl, byte=True)
        if model_utils.compare_version(pipeline.fate_version, '1.5.0') == 'gt':
            pipeline.parent_info = json_dumps(
                {
                    'parent_model_id': model_id,
                    'parent_model_version': model_version
                },
                byte=True)
            pipeline.parent = False
            runtime_conf_on_party = json_loads(pipeline.runtime_conf_on_party)
            runtime_conf_on_party['job_parameters'][
                'model_version'] = child_model_version
            pipeline.runtime_conf_on_party = json_dumps(runtime_conf_on_party,
                                                        byte=True)

        # save model file
        deploy_model.save_pipeline(pipeline)
        shutil.copyfile(
            os.path.join(deploy_model.model_path, "pipeline.pb"),
            os.path.join(deploy_model.model_path, "variables", "data",
                         "pipeline", "pipeline", "Pipeline"))

        model_info = model_utils.gather_model_info_data(deploy_model)
        model_info['job_id'] = model_info['f_model_version']
        model_info['size'] = deploy_model.calculate_model_file_size()
        model_info['role'] = local_role
        model_info['party_id'] = local_party_id
        model_info['work_mode'] = adapter.get_job_work_mode()
        model_info['parent'] = False if model_info.get(
            'f_inference_dsl') else True
        if model_utils.compare_version(model_info['f_fate_version'],
                                       '1.5.0') == 'eq':
            model_info['roles'] = model_info.get('f_train_runtime_conf',
                                                 {}).get('role', {})
            model_info['initiator_role'] = model_info.get(
                'f_train_runtime_conf', {}).get('initiator', {}).get('role')
            model_info['initiator_party_id'] = model_info.get(
                'f_train_runtime_conf', {}).get('initiator',
                                                {}).get('party_id')
        model_utils.save_model_info(model_info)

    except Exception as e:
        stat_logger.exception(e)
        return 100, f"deploy model of role {local_role} {local_party_id} failed, details: {str(e)}"
    else:
        return 0, f"deploy model of role {local_role} {local_party_id} success"
def deploy(config_data):
    model_id = config_data.get('model_id')
    model_version = config_data.get('model_version')
    local_role = config_data.get('local').get('role')
    local_party_id = config_data.get('local').get('party_id')
    child_model_version = config_data.get('child_model_version')
    components_checkpoint = config_data.get('components_checkpoint', {})
    warning_msg = ""

    try:
        party_model_id = gen_party_model_id(model_id=model_id,
                                            role=local_role,
                                            party_id=local_party_id)
        model = PipelinedModel(model_id=party_model_id,
                               model_version=model_version)
        model_data = model.collect_models(in_bytes=True)
        if "pipeline.pipeline:Pipeline" not in model_data:
            raise Exception("Can not found pipeline file in model.")

        # check if the model could be executed the deploy process (parent/child)
        if not check_before_deploy(model):
            raise Exception('Child model could not be deployed.')

        # copy proto content from parent model and generate a child model
        deploy_model = PipelinedModel(model_id=party_model_id,
                                      model_version=child_model_version)
        shutil.copytree(src=model.model_path,
                        dst=deploy_model.model_path,
                        ignore=lambda src, names: {'checkpoint'}
                        if src == model.model_path else {})
        pipeline_model = deploy_model.read_pipeline_model()

        train_runtime_conf = json_loads(pipeline_model.train_runtime_conf)
        runtime_conf_on_party = json_loads(
            pipeline_model.runtime_conf_on_party)
        dsl_version = train_runtime_conf.get("dsl_version", "1")

        parser = get_dsl_parser_by_version(dsl_version)
        train_dsl = json_loads(pipeline_model.train_dsl)
        parent_predict_dsl = json_loads(pipeline_model.inference_dsl)

        if config_data.get('dsl') or config_data.get('predict_dsl'):
            inference_dsl = config_data.get('dsl') if config_data.get(
                'dsl') else config_data.get('predict_dsl')
            if not isinstance(inference_dsl, dict):
                inference_dsl = json_loads(inference_dsl)
        else:
            if config_data.get('cpn_list', None):
                cpn_list = config_data.pop('cpn_list')
            else:
                cpn_list = list(train_dsl.get('components', {}).keys())
            if int(dsl_version) == 1:
                # convert v1 dsl to v2 dsl
                inference_dsl, warning_msg = parser.convert_dsl_v1_to_v2(
                    parent_predict_dsl)
            else:
                parser = get_dsl_parser_by_version(dsl_version)
                inference_dsl = parser.deploy_component(cpn_list, train_dsl)

        # convert v1 conf to v2 conf
        if int(dsl_version) == 1:
            components = parser.get_components_light_weight(inference_dsl)

            from fate_flow.db.component_registry import ComponentRegistry
            job_providers = parser.get_job_providers(
                dsl=inference_dsl, provider_detail=ComponentRegistry.REGISTRY)
            cpn_role_parameters = dict()
            for cpn in components:
                cpn_name = cpn.get_name()
                role_params = parser.parse_component_role_parameters(
                    component=cpn_name,
                    dsl=inference_dsl,
                    runtime_conf=train_runtime_conf,
                    provider_detail=ComponentRegistry.REGISTRY,
                    provider_name=job_providers[cpn_name]["provider"]["name"],
                    provider_version=job_providers[cpn_name]["provider"]
                    ["version"])
                cpn_role_parameters[cpn_name] = role_params
            train_runtime_conf = parser.convert_conf_v1_to_v2(
                train_runtime_conf, cpn_role_parameters)

        adapter = JobRuntimeConfigAdapter(train_runtime_conf)
        train_runtime_conf = adapter.update_model_id_version(
            model_version=deploy_model.model_version)
        pipeline_model.model_version = child_model_version
        pipeline_model.train_runtime_conf = json_dumps(train_runtime_conf,
                                                       byte=True)

        #  save inference dsl into child model file
        parser = get_dsl_parser_by_version(2)
        parser.verify_dsl(inference_dsl, "predict")
        inference_dsl = JobSaver.fill_job_inference_dsl(
            job_id=model_version,
            role=local_role,
            party_id=local_party_id,
            dsl_parser=parser,
            origin_inference_dsl=inference_dsl)
        pipeline_model.inference_dsl = json_dumps(inference_dsl, byte=True)

        if compare_version(pipeline_model.fate_version, '1.5.0') == 'gt':
            pipeline_model.parent_info = json_dumps(
                {
                    'parent_model_id': model_id,
                    'parent_model_version': model_version
                },
                byte=True)
            pipeline_model.parent = False
            runtime_conf_on_party['job_parameters'][
                'model_version'] = child_model_version
            pipeline_model.runtime_conf_on_party = json_dumps(
                runtime_conf_on_party, byte=True)

        # save model file
        deploy_model.save_pipeline(pipeline_model)
        shutil.copyfile(
            os.path.join(deploy_model.model_path, "pipeline.pb"),
            os.path.join(deploy_model.model_path, "variables", "data",
                         "pipeline", "pipeline", "Pipeline"))

        model_info = gather_model_info_data(deploy_model)
        model_info['job_id'] = model_info['f_model_version']
        model_info['size'] = deploy_model.calculate_model_file_size()
        model_info['role'] = local_role
        model_info['party_id'] = local_party_id
        model_info['parent'] = False if model_info.get(
            'f_inference_dsl') else True
        if compare_version(model_info['f_fate_version'], '1.5.0') == 'eq':
            model_info['roles'] = model_info.get('f_train_runtime_conf',
                                                 {}).get('role', {})
            model_info['initiator_role'] = model_info.get(
                'f_train_runtime_conf', {}).get('initiator', {}).get('role')
            model_info['initiator_party_id'] = model_info.get(
                'f_train_runtime_conf', {}).get('initiator',
                                                {}).get('party_id')
        save_model_info(model_info)

        for component_name, component in train_dsl.get('components',
                                                       {}).items():
            step_index = components_checkpoint.get(component_name,
                                                   {}).get('step_index')
            step_name = components_checkpoint.get(component_name,
                                                  {}).get('step_name')
            if step_index is not None:
                step_index = int(step_index)
                step_name = None
            elif step_name is None:
                continue

            checkpoint_manager = CheckpointManager(
                role=local_role,
                party_id=local_party_id,
                model_id=model_id,
                model_version=model_version,
                component_name=component_name,
                mkdir=False,
            )
            checkpoint_manager.load_checkpoints_from_disk()
            if checkpoint_manager.latest_checkpoint is not None:
                checkpoint_manager.deploy(
                    child_model_version,
                    component['output']['model'][0] if component.get(
                        'output', {}).get('model') else 'default',
                    step_index,
                    step_name,
                )
    except Exception as e:
        stat_logger.exception(e)
        return 100, f"deploy model of role {local_role} {local_party_id} failed, details: {str(e)}"
    else:
        msg = f"deploy model of role {local_role} {local_party_id} success"
        if warning_msg:
            msg = msg + f", warning: {warning_msg}"
        return 0, msg