def plot_result(): # Load synthetic data data = numpy.loadtxt('data.txt', unpack=True) x, y, z = data[0:3] tensor = data[3:] with open('model.pickle') as f: model = pickle.load(f) # Load the inversion results with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results['predicted'] shape = (26, 26) names = ['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz'] i = 0 for true, pred in zip(tensor, predicted): pyplot.figure(figsize=(3.33, 4)) pyplot.axis('scaled') levels = vis.contourf(y * 0.001, x * 0.001, true, shape, 8) cb = pyplot.colorbar(orientation='horizontal', shrink=0.95) cb.set_ticks([l for j, l in enumerate(levels) if j % 2 != 0]) vis.contour(y * 0.001, x * 0.001, pred, shape, levels, color='k') pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.savefig('.'.join([names[i], 'pdf'])) i += 1 pyplot.show() extent = [0, 5000, 0, 5000, 0, 1000] density_model = vfilter(-2000, -1, 'density', results['mesh']) density_model.extend(vfilter(1, 2000, 'density', results['mesh'])) seeds = [results['mesh'][s] for s in results['seeds']] vis.mayavi_figure() vis.prisms3D(model, extract('density', model), style='wireframe') vis.prisms3D(seeds, extract('density', seeds)) vis.prisms3D(density_model, extract('density', density_model)) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i * 0.001 for i in extent], fmt='%.1f', nlabels=3) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
def plot_result(): # Load synthetic data data = numpy.loadtxt('data.txt', unpack=True) x, y, z = data[0:3] tensor = data[3:] with open('model.pickle') as f: model = pickle.load(f) # Load the inversion results with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results['predicted'] shape = (26, 26) names = ['gxx', 'gxy', 'gxz', 'gyy', 'gyz', 'gzz'] i = 0 for true, pred in zip(tensor, predicted): pyplot.figure(figsize=(3.33,4)) pyplot.axis('scaled') levels = vis.contourf(y*0.001, x*0.001, true, shape, 8) cb = pyplot.colorbar(orientation='horizontal', shrink=0.95) cb.set_ticks([l for j, l in enumerate(levels) if j%2 != 0]) vis.contour(y*0.001, x*0.001, pred, shape, levels, color='k') pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.savefig('.'.join([names[i], 'pdf'])) i += 1 pyplot.show() extent = [0, 5000, 0, 5000, 0, 1000] density_model = vfilter(-2000, -1, 'density', results['mesh']) density_model.extend(vfilter(1, 2000, 'density', results['mesh'])) seeds = [results['mesh'][s] for s in results['seeds']] vis.mayavi_figure() vis.prisms3D(model, extract('density', model), style='wireframe') vis.prisms3D(seeds, extract('density', seeds)) vis.prisms3D(density_model, extract('density', density_model)) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i*0.001 for i in extent], fmt='%.1f', nlabels=3) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
def plot_result(): # Load synthetic data data = numpy.loadtxt('data.txt', unpack=True) x, y, z = data[0:3] tensor = data[-3:] with open('model.pickle') as f: model = pickle.load(f) # Load the inversion results with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results['predicted'] shape = (51, 51) for true, pred in zip(tensor, predicted): pyplot.figure(figsize=(5, 4)) pyplot.axis('scaled') levels = vis.contourf(y * 0.001, x * 0.001, true, shape, 8) pyplot.colorbar() vis.contour(y * 0.001, x * 0.001, pred, shape, levels, color='k') pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.show() extent = [0, 5000, 0, 5000, 0, 1500] density_model = vfilter(1100, 1200, 'density', results['mesh']) seeds = [results['mesh'][s] for s in results['seeds']] vis.mayavi_figure() vis.prisms3D(model, extract('density', model), style='wireframe') vis.prisms3D(seeds, extract('density', seeds), vmin=0) vis.prisms3D(density_model, extract('density', density_model), vmin=0) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i * 0.001 for i in extent], fmt='%.1f', nlabels=6) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
def plot_result(): # Load synthetic data data = numpy.loadtxt('data.txt', unpack=True) x, y, z = data[0:3] tensor = data[-3:] with open('model.pickle') as f: model = pickle.load(f) # Load the inversion results with open(sys.argv[1]) as f: results = pickle.load(f) predicted = results['predicted'] shape = (51, 51) for true, pred in zip(tensor, predicted): pyplot.figure(figsize=(5,4)) pyplot.axis('scaled') levels = vis.contourf(y*0.001, x*0.001, true, shape, 8) pyplot.colorbar() vis.contour(y*0.001, x*0.001, pred, shape, levels, color='k') pyplot.xlabel('Horizontal coordinate y (km)') pyplot.ylabel('Horizontal coordinate x (km)') pyplot.show() extent = [0, 5000, 0, 5000, 0, 1500] density_model = vfilter(1100, 1200, 'density', results['mesh']) seeds = [results['mesh'][s] for s in results['seeds']] vis.mayavi_figure() vis.prisms3D(model, extract('density', model), style='wireframe') vis.prisms3D(seeds, extract('density', seeds), vmin=0) vis.prisms3D(density_model, extract('density', density_model), vmin=0) vis.add_axes3d(vis.add_outline3d(extent), ranges=[i*0.001 for i in extent], fmt='%.1f', nlabels=6) vis.wall_bottom(extent) vis.wall_north(extent) vis.mlab.show()
results = pickle.load(f) modelfile = __import__(sys.argv[2].split('.')[0]) model = modelfile.model def setview(s): s.scene.camera.position = [-2263.7301544182874, 488.95715870190594, 318.19750997028473] s.scene.camera.focal_point = [490.77486582744939, 489.04595996051546, 562.78867616870843] s.scene.camera.view_angle = 30.0 s.scene.camera.view_up = [0.088448540522960639, -0.0026066904949591562, -0.99607733677863675] s.scene.camera.clipping_range = [1662.1503239591332, 4168.9269870750722] s.scene.camera.compute_view_plane_normal() s.scene.render() extent = [0, 1000, 0, 1000, 0, 1000] density_model = vfilter(1, 2000, 'density', results['mesh']) seeds = [results['mesh'][s] for s in results['seeds']] fmt = 'png' f = vis.mayavi_figure(size=(900,900)) p = vis.prisms3D(model, extract('density', model), style='wireframe') p.actor.mapper.scalar_visibility = False p.actor.property.color = (0,0,0) p.actor.property.line_width = 5 p = vis.prisms3D(seeds, extract('density', seeds), vmin=0, vmax=2000, cmap='gist_yarg') vis.add_outline3d(extent) #a = vis.add_axes3d(vis.add_outline3d(extent), ranges=[i*0.001 for i in extent], #fmt='%.1f', nlabels=3) #a.axes.x_label, a.axes.y_label, a.axes.z_label = '', '', '' #a.axes.font_factor = 2
-2263.7301544182874, 488.95715870190594, 318.19750997028473 ] s.scene.camera.focal_point = [ 490.77486582744939, 489.04595996051546, 562.78867616870843 ] s.scene.camera.view_angle = 30.0 s.scene.camera.view_up = [ 0.088448540522960639, -0.0026066904949591562, -0.99607733677863675 ] s.scene.camera.clipping_range = [1662.1503239591332, 4168.9269870750722] s.scene.camera.compute_view_plane_normal() s.scene.render() extent = [0, 1000, 0, 1000, 0, 1000] density_model = vfilter(1, 2000, 'density', results['mesh']) seeds = [results['mesh'][s] for s in results['seeds']] fmt = 'png' f = vis.mayavi_figure(size=(900, 900)) p = vis.prisms3D(model, extract('density', model), style='wireframe') p.actor.mapper.scalar_visibility = False p.actor.property.color = (0, 0, 0) p.actor.property.line_width = 5 p = vis.prisms3D(seeds, extract('density', seeds), vmin=0, vmax=2000, cmap='gist_yarg') vis.add_outline3d(extent) #a = vis.add_axes3d(vis.add_outline3d(extent), ranges=[i*0.001 for i in extent],