def compute_inv_depths(self, image, random_seed): """Computes inverse depth maps from single images""" # Randomly flip and estimate inverse depth maps flip_lr = random_seed < self.flip_lr_prob if self.training else False inv_depths = make_list(flip_model(self.depth_net, image, flip_lr)) # If upsampling depth maps if self.upsample_depth_maps: inv_depths = interpolate_scales( inv_depths, mode='nearest', align_corners=None) # Return inverse depth maps return inv_depths
def compute_inv_depths_feedback(self, image, disp, random_seed): """Computes inverse depth maps from single images""" #concat image & disparity # Randomly flip and estimate inverse depth maps flip_lr = random.random() < self.flip_lr_prob if self.training else False if flip_lr: image = torch.flip(image,[3]) image = torch.cat([image, disp] , 1) output = self.depth_net2(image) inv_depths = make_list(output) # If upsampling depth maps if self.upsample_depth_maps: inv_depths = interpolate_scales( inv_depths, mode='nearest', align_corners=None) # Return inverse depth maps return inv_depths