Exemple #1
0
def run_continuous_injection( gamma_boost, dens_func,
                              p_zmin, p_zmax, show, N_check=3 ):
    # Chose the time step
    dt = (zmax-zmin)/Nz/c

    # Initialize the different structures
    sim = Simulation( Nz, zmax, Nr, rmax, Nm, dt,
        p_zmin, p_zmax, 0, p_rmax, p_nz, p_nr, p_nt, 0.5*n,
        dens_func=dens_func, initialize_ions=False, zmin=zmin,
        use_cuda=use_cuda, gamma_boost=gamma_boost, boundaries='open' )

    # Add another species with a different number of particles per cell
    sim.add_new_species( -e, m_e, 0.5*n, dens_func,
                            2*p_nz, 2*p_nr, 2*p_nt,
                            p_zmin, p_zmax, 0, p_rmax )

    # Set the moving window, which handles the continuous injection
    # The moving window has an arbitrary velocity (0.7*c) so as to check
    # that the injection is correct in this case also
    sim.set_moving_window( v=c )

    # Check that the density is correct after different timesteps
    N_step = int( Nz/N_check/2 )
    for i in range( N_check ):
        sim.step( N_step, move_momenta=False )
        check_density( sim, gamma_boost, dens_func, show )
Exemple #2
0
                     gamma_boost=boost.gamma0,
                     n_order=n_order,
                     use_cuda=use_cuda,
                     boundaries={
                         'z': 'open',
                         'r': 'reflective'
                     })
    # 'r': 'open' can also be used, but is more computationally expensive

    # Add the plasma electron and plasma ions
    plasma_elec = sim.add_new_species(q=-e,
                                      m=m_e,
                                      n=n_e,
                                      dens_func=dens_func,
                                      boost_positions_in_dens_func=True,
                                      p_zmin=p_zmin,
                                      p_zmax=p_zmax,
                                      p_rmax=p_rmax,
                                      p_nz=p_nz,
                                      p_nr=p_nr,
                                      p_nt=p_nt)
    plasma_ions = sim.add_new_species(q=e,
                                      m=m_p,
                                      n=n_e,
                                      dens_func=dens_func,
                                      boost_positions_in_dens_func=True,
                                      p_zmin=p_zmin,
                                      p_zmax=p_zmax,
                                      p_rmax=p_rmax,
                                      p_nz=p_nz,
                                      p_nr=p_nr,
Exemple #3
0
def run_simulation(gamma_boost, use_separate_electron_species):
    """
    Run a simulation with a laser pulse going through a gas jet of ionizable
    N5+ atoms, and check the fraction of atoms that are in the N5+ state.

    Parameters
    ----------
    gamma_boost: float
        The Lorentz factor of the frame in which the simulation is carried out.
    use_separate_electron_species: bool
        Whether to use separate electron species for each level, or
        a single electron species for all levels.
    """
    # The simulation box
    zmax_lab = 20.e-6  # Length of the box along z (meters)
    zmin_lab = 0.e-6
    Nr = 3  # Number of gridpoints along r
    rmax = 10.e-6  # Length of the box along r (meters)
    Nm = 2  # Number of modes used

    # The particles of the plasma
    p_zmin = 5.e-6  # Position of the beginning of the plasma (meters)
    p_zmax = 15.e-6
    p_rmin = 0.  # Minimal radial position of the plasma (meters)
    p_rmax = 100.e-6  # Maximal radial position of the plasma (meters)
    n_atoms = 0.2  # The atomic density is chosen very low,
    # to avoid collective effects
    p_nz = 2  # Number of particles per cell along z
    p_nr = 1  # Number of particles per cell along r
    p_nt = 4  # Number of particles per cell along theta

    # Boosted frame
    boost = BoostConverter(gamma_boost)
    # Boost the different quantities
    beta_boost = np.sqrt(1. - 1. / gamma_boost**2)
    zmin, zmax = boost.static_length([zmin_lab, zmax_lab])
    p_zmin, p_zmax = boost.static_length([p_zmin, p_zmax])
    n_atoms, = boost.static_density([n_atoms])
    # Increase the number of particles per cell in order to keep sufficient
    # statistics for the evaluation of the ionization fraction
    if gamma_boost > 1:
        p_nz = int(2 * gamma_boost * (1 + beta_boost) * p_nz)

    # The laser
    a0 = 1.8  # Laser amplitude
    lambda0_lab = 0.8e-6  # Laser wavelength
    # Boost the laser wavelength before calculating the laser amplitude
    lambda0, = boost.copropag_length([lambda0_lab], beta_object=1.)
    # Duration and initial position of the laser
    ctau = 10. * lambda0
    z0 = -2 * ctau
    # Calculate laser amplitude
    omega = 2 * np.pi * c / lambda0
    E0 = a0 * m_e * c * omega / e
    B0 = E0 / c

    def laser_func(F, x, y, z, t, amplitude, length_scale):
        """
        Function that describes a Gaussian laser with infinite waist
        """
        return( F + amplitude * math.cos( 2*np.pi*(z-c*t)/lambda0 ) * \
                math.exp( - (z - c*t - z0)**2/ctau**2 ) )

    # Resolution and number of timesteps
    dz = lambda0 / 16.
    dt = dz / c
    Nz = int((zmax - zmin) / dz) + 1
    N_step = int(
        (2. * 40. * lambda0 + zmax - zmin) / (dz * (1 + beta_boost))) + 1

    # Get the speed of the plasma
    uz_m, = boost.longitudinal_momentum([0.])
    v_plasma, = boost.velocity([0.])

    # The diagnostics
    diag_period = N_step - 1  # Period of the diagnostics in number of timesteps

    # Initial ionization level of the Nitrogen atoms
    level_start = 2
    # Initialize the simulation object, with the neutralizing electrons
    # No particles are created because we do not pass the density
    sim = Simulation(Nz,
                     zmax,
                     Nr,
                     rmax,
                     Nm,
                     dt,
                     zmin=zmin,
                     v_comoving=v_plasma,
                     use_galilean=False,
                     boundaries='open',
                     use_cuda=use_cuda)

    # Add the charge-neutralizing electrons
    elec = sim.add_new_species(q=-e,
                               m=m_e,
                               n=level_start * n_atoms,
                               p_nz=p_nz,
                               p_nr=p_nr,
                               p_nt=p_nt,
                               p_zmin=p_zmin,
                               p_zmax=p_zmax,
                               p_rmin=p_rmin,
                               p_rmax=p_rmax,
                               continuous_injection=False,
                               uz_m=uz_m)
    # Add the N atoms
    ions = sim.add_new_species(q=0,
                               m=14. * m_p,
                               n=n_atoms,
                               p_nz=p_nz,
                               p_nr=p_nr,
                               p_nt=p_nt,
                               p_zmin=p_zmin,
                               p_zmax=p_zmax,
                               p_rmin=p_rmin,
                               p_rmax=p_rmax,
                               continuous_injection=False,
                               uz_m=uz_m)
    # Add the target electrons
    if use_separate_electron_species:
        # Use a dictionary of electron species: one per ionizable level
        target_species = {}
        level_max = 6  # N can go up to N7+, but here we stop at N6+
        for i_level in range(level_start, level_max):
            target_species[i_level] = sim.add_new_species(q=-e, m=m_e)
    else:
        # Use the pre-existing, charge-neutralizing electrons
        target_species = elec
        level_max = None  # Default is going up to N7+
    # Define ionization
    ions.make_ionizable(element='N',
                        level_start=level_start,
                        level_max=level_max,
                        target_species=target_species)
    # Set the moving window
    sim.set_moving_window(v=v_plasma)

    # Add a laser to the fields of the simulation (external fields)
    sim.external_fields = [
        ExternalField(laser_func, 'Ex', E0, 0.),
        ExternalField(laser_func, 'By', B0, 0.)
    ]

    # Add a particle diagnostic
    sim.diags = [
        ParticleDiagnostic(
            diag_period,
            {"ions": ions},
            particle_data=["position", "gamma", "weighting", "E", "B"],
            # Test output of fields and gamma for standard
            # (non-boosted) particle diagnostics
            write_dir='tests/diags',
            comm=sim.comm)
    ]
    if gamma_boost > 1:
        T_sim_lab = (2. * 40. * lambda0_lab + zmax_lab - zmin_lab) / c
        sim.diags.append(
            BackTransformedParticleDiagnostic(zmin_lab,
                                              zmax_lab,
                                              v_lab=0.,
                                              dt_snapshots_lab=T_sim_lab / 2.,
                                              Ntot_snapshots_lab=3,
                                              gamma_boost=gamma_boost,
                                              period=diag_period,
                                              fldobject=sim.fld,
                                              species={"ions": ions},
                                              comm=sim.comm,
                                              write_dir='tests/lab_diags'))

    # Run the simulation
    sim.step(N_step, use_true_rho=True)

    # Check the fraction of N5+ ions at the end of the simulation
    w = ions.w
    ioniz_level = ions.ionizer.ionization_level
    # Get the total number of N atoms/ions (all ionization levels together)
    ntot = w.sum()
    # Get the total number of N5+ ions
    n_N5 = w[ioniz_level == 5].sum()
    # Get the fraction of N5+ ions, and check that it is close to 0.32
    N5_fraction = n_N5 / ntot
    print('N5+ fraction: %.4f' % N5_fraction)
    assert ((N5_fraction > 0.30) and (N5_fraction < 0.34))

    # When different electron species are created, check the fraction of
    # each electron species
    if use_separate_electron_species:
        for i_level in range(level_start, level_max):
            n_N = w[ioniz_level == i_level].sum()
            assert np.allclose(target_species[i_level].w.sum(), n_N)

    # Check consistency in the regular openPMD diagnostics
    ts = OpenPMDTimeSeries('./tests/diags/hdf5/')
    last_iteration = ts.iterations[-1]
    w, q = ts.get_particle(['w', 'charge'],
                           species="ions",
                           iteration=last_iteration)
    # Check that the openPMD file contains the same number of N5+ ions
    n_N5_openpmd = np.sum(w[(4.5 * e < q) & (q < 5.5 * e)])
    assert np.isclose(n_N5_openpmd, n_N5)
    # Remove openPMD files
    shutil.rmtree('./tests/diags/')

    # Check consistency of the back-transformed openPMD diagnostics
    if gamma_boost > 1.:
        ts = OpenPMDTimeSeries('./tests/lab_diags/hdf5/')
        last_iteration = ts.iterations[-1]
        w, q = ts.get_particle(['w', 'charge'],
                               species="ions",
                               iteration=last_iteration)
        # Check that the openPMD file contains the same number of N5+ ions
        n_N5_openpmd = np.sum(w[(4.5 * e < q) & (q < 5.5 * e)])
        assert np.isclose(n_N5_openpmd, n_N5)
        # Remove openPMD files
        shutil.rmtree('./tests/lab_diags/')
                     initialize_ions=False,
                     n_order=n_order,
                     use_cuda=use_cuda)
    # By default the simulation initializes an electron species (sim.ptcl[0])
    # Because we did not pass the arguments `n`, `p_nz`, `p_nr`, `p_nz`,
    # this electron species does not contain any macroparticles.
    # It is okay to just remove it from the list of species.
    sim.ptcl = []

    # Add the Helium ions (pre-ionized up to level 1),
    # the Nitrogen ions (pre-ionized up to level 5)
    # and the associated electrons (from the pre-ionized levels)
    atoms_He = sim.add_new_species(q=e,
                                   m=4. * m_p,
                                   n=n_He,
                                   dens_func=dens_func,
                                   p_nz=p_nz,
                                   p_nr=p_nr,
                                   p_nt=p_nt,
                                   p_zmin=p_zmin)
    atoms_N = sim.add_new_species(q=5 * e,
                                  m=14. * m_p,
                                  n=n_N,
                                  dens_func=dens_func,
                                  p_nz=p_nz,
                                  p_nr=p_nr,
                                  p_nt=p_nt,
                                  p_zmin=p_zmin)
    # Important: the electron density from N5+ is 5x larger than that from He+
    n_e = n_He + 5 * n_N
    elec = sim.add_new_species(q=-e,
                               m=m_e,
Exemple #5
0
class Simulation(PICMI_Simulation):

    # Redefine the `init` method, as required by the picmi `_ClassWithInit`
    def init(self, kw):

        self.sim_kw = {}
        for argname in ['use_ruyten_shapes', 'use_modified_volume']:
            if f'fbpic_{argname}' in kw:
                self.sim_kw[argname] = kw.pop(f'fbpic_{argname}')

        self.step_kw = {}
        for argname in [
                'correct_currents', 'correct_divE', 'use_true_rho',
                'move_positions', 'move_momenta', 'show_progress'
        ]:
            if f'fbpic_{argname}' in kw:
                self.step_kw[argname] = kw.pop(f'fbpic_{argname}')

        # Get the grid
        grid = self.solver.grid
        if not type(grid) == PICMI_CylindricalGrid:
            raise ValueError('When using fbpic with PICMI, '
                             'the grid needs to be a CylindricalGrid object.')
        # Check rmin and boundary conditions
        assert grid.lower_bound[0] == 0.
        assert grid.lower_boundary_conditions[
            1] == grid.upper_boundary_conditions[1]
        if grid.lower_boundary_conditions[1] == 'reflective':
            warnings.warn(
                "FBPIC does not support reflective boundary condition in z.\n"
                "The z boundary condition was automatically converted to 'open'."
            )
            grid.lower_boundary_conditions[1] = 'open'
            grid.upper_boundary_conditions[1] = 'open'
        assert grid.upper_boundary_conditions[1] in ['periodic', 'open']
        assert grid.upper_boundary_conditions[0] in ['reflective', 'open']

        # Determine timestep
        if self.solver.cfl is not None:
            dz = (grid.upper_bound[1] -
                  grid.lower_bound[1]) / grid.number_of_cells[1]
            dr = (grid.upper_bound[0] -
                  grid.lower_bound[0]) / grid.number_of_cells[0]
            if self.gamma_boost is not None:
                beta = np.sqrt(1. - 1. / self.gamma_boost**2)
                dr = dr / ((1 + beta) * self.gamma_boost)
            dt = self.solver.cfl * min(dz, dr) / c
        elif self.time_step_size is not None:
            dt = self.time_step_size
        else:
            raise ValueError('You need to either set the `cfl` of the solver\n'
                             'or the `timestep_size` of the `Simulation`.')

        # Convert API for the smoother
        if self.solver.source_smoother is None:
            smoother = BinomialSmoother()
        else:
            if self.solver.source_smoother.n_pass is None:
                n_passes = 1
            else:
                n_passes = {
                    'r': self.solver.source_smoother.n_pass[0],
                    'z': self.solver.source_smoother.n_pass[1]
                }
            if self.solver.source_smoother.compensation is None:
                compensator = False
            else:
                compensator = all(self.solver.source_smoother.compensation)
            smoother = BinomialSmoother(n_passes=n_passes,
                                        compensator=compensator)

        # Convert verbose level:
        verbose_level = self.verbose
        if verbose_level is None:
            verbose_level = 1

        # Order of the stencil for z derivatives in the Maxwell solver
        if self.solver.stencil_order is None:
            n_order = -1
        else:
            n_order = self.solver.stencil_order[-1]

        # Number of guard cells
        if grid.guard_cells is None:
            n_guard = None
        else:
            n_guard = grid.guard_cells[-1]

        if self.solver.galilean_velocity is None:
            v_comoving = None
        else:
            v_comoving = self.solver.galilean_velocity[-1]

        # Initialize and store the FBPIC simulation object
        self.fbpic_sim = FBPICSimulation(Nz=int(grid.number_of_cells[1]),
                                         zmin=grid.lower_bound[1],
                                         zmax=grid.upper_bound[1],
                                         Nr=int(grid.number_of_cells[0]),
                                         rmax=grid.upper_bound[0],
                                         Nm=grid.n_azimuthal_modes,
                                         dt=dt,
                                         use_cuda=True,
                                         smoother=smoother,
                                         n_order=n_order,
                                         boundaries={
                                             'z':
                                             grid.upper_boundary_conditions[1],
                                             'r':
                                             grid.upper_boundary_conditions[0]
                                         },
                                         n_guard=n_guard,
                                         verbose_level=verbose_level,
                                         particle_shape=self.particle_shape,
                                         v_comoving=v_comoving,
                                         gamma_boost=self.gamma_boost,
                                         **self.sim_kw)

        # Set the moving window
        if grid.moving_window_velocity is not None:
            self.fbpic_sim.set_moving_window(grid.moving_window_velocity[-1])

    # Redefine the method `add_laser` from the PICMI Simulation class
    def add_laser(self, laser, injection_method):
        # Call method of parent class
        PICMI_Simulation.add_laser(self, laser, injection_method)

        # Handle injection method
        assert type(injection_method) == PICMI_LaserAntenna
        # Handle laser profile method
        if type(laser) == PICMI_GaussianLaser:
            assert laser.propagation_direction[0] == 0.
            assert laser.propagation_direction[1] == 0.
            assert (laser.zeta is None) or (laser.zeta == 0)
            assert (laser.beta is None) or (laser.beta == 0)
            phi2_chirp = laser.phi2
            if phi2_chirp is None:
                phi2_chirp = 0
            polarization_angle = np.arctan2(laser.polarization_direction[1],
                                            laser.polarization_direction[0])
            laser_profile = GaussianLaser(a0=laser.a0,
                                          waist=laser.waist,
                                          z0=laser.centroid_position[-1],
                                          zf=laser.focal_position[-1],
                                          tau=laser.duration,
                                          theta_pol=polarization_angle,
                                          phi2_chirp=phi2_chirp)
        else:
            raise ValueError('Unknown laser profile: %s' %
                             type(injection_method))

        # Inject the laser
        add_laser_pulse(self.fbpic_sim,
                        laser_profile,
                        method='antenna',
                        z0_antenna=injection_method.position[-1],
                        gamma_boost=self.gamma_boost)

    # Redefine the method `add_species` from the PICMI Simulation class
    def add_species(self, species, layout, initialize_self_field=False):
        # Call method of parent class
        PICMI_Simulation.add_species(self, species, layout,
                                     initialize_self_field)
        # Call generic method internally
        self._add_species_generic(species,
                                  layout,
                                  injection_plane_position=None,
                                  injection_plane_normal_vector=None,
                                  initialize_self_field=initialize_self_field)

    def add_species_through_plane(self,
                                  species,
                                  layout,
                                  injection_plane_position,
                                  injection_plane_normal_vector,
                                  initialize_self_field=False):
        # Call method of parent class
        PICMI_Simulation.add_species_through_plane(
            self,
            species,
            layout,
            injection_plane_position,
            injection_plane_normal_vector,
            initialize_self_field=initialize_self_field)
        # Call generic method internally
        self._add_species_generic(
            species,
            layout,
            injection_plane_position=injection_plane_position,
            injection_plane_normal_vector=injection_plane_normal_vector,
            initialize_self_field=initialize_self_field)

    def _add_species_generic(self, species, layout, injection_plane_position,
                             injection_plane_normal_vector,
                             initialize_self_field):

        # Extract list of species
        if type(species) == PICMI_Species:
            species_instances_list = [species]
        elif type(species) == PICMI_MultiSpecies:
            species_instances_list = species.species_instances_list
        else:
            raise ValueError('Unknown type: %s' % type(species))

        # Loop over species and create FBPIC species
        for s in species_instances_list:

            # Get their charge and mass
            if s.particle_type is not None:
                s.charge = particle_charge[s.particle_type]
                s.mass = particle_mass[s.particle_type]
            # If `charge_state` is set, redefine the charge and mass
            if s.charge_state is not None:
                s.charge = s.charge_state * e
                s.mass -= s.charge_state * m_e

            # Add the species to the FBPIC simulation
            fbpic_species = self._create_new_fbpic_species(
                s, layout, injection_plane_position,
                injection_plane_normal_vector, initialize_self_field)

            # Register a pointer to the FBPIC species in the PICMI species itself
            # (Useful for particle diagnostics later on)
            s.fbpic_species = fbpic_species

        # Loop over species and handle ionization
        for s in species_instances_list:
            for interaction in s.interactions:
                assert interaction[0] == 'ionization'
                assert interaction[1] == 'ADK'
                picmi_target = interaction[2]
                if not hasattr(picmi_target, 'fbpic_species'):
                    raise RuntimeError(
                        'For ionization with PICMI+FBPIC:\n'
                        'You need to add the target species to the simulation,'
                        ' before the other species.')
                fbpic_target = picmi_target.fbpic_species
                fbpic_source = s.fbpic_species
                fbpic_source.make_ionizable(element=s.particle_type,
                                            level_start=s.charge_state,
                                            target_species=fbpic_target)

    def _create_new_fbpic_species(self, s, layout, injection_plane_position,
                                  injection_plane_normal_vector,
                                  initialize_self_field):

        # - For the case of a plasma/beam defined in a gridded layout
        if type(layout) == PICMI_GriddedLayout:
            # - Uniform distribution
            if type(s.initial_distribution) == PICMI_UniformDistribution:
                n0 = s.initial_distribution.density
                dens_func = None
            # - Analytic distribution
            elif type(s.initial_distribution) == PICMI_AnalyticDistribution:
                import numexpr
                density_expression = s.initial_distribution.density_expression
                if s.density_scale is not None:
                    n0 = s.density_scale
                else:
                    n0 = 1.

                def dens_func(x, y, z):
                    d = locals()
                    d.update(s.initial_distribution.user_defined_kw)
                    n = numexpr.evaluate(density_expression, local_dict=d)
                    return n
            else:
                raise ValueError(
                    'Unknown combination of layout and distribution')
            p_nr = layout.n_macroparticle_per_cell[0]
            p_nt = layout.n_macroparticle_per_cell[1]
            p_nz = layout.n_macroparticle_per_cell[2]

            if initialize_self_field or (injection_plane_position is not None):
                assert s.initial_distribution.fill_in != True

                if injection_plane_position is None:
                    z_injection_plane = None
                else:
                    z_injection_plane = injection_plane_position[-1]
                gamma0_beta0 = s.initial_distribution.directed_velocity[-1] / c
                gamma0 = (1 + gamma0_beta0**2)**.5
                dist = s.initial_distribution
                fbpic_species = add_particle_bunch(
                    self.fbpic_sim,
                    q=s.charge,
                    m=s.mass,
                    gamma0=gamma0,
                    n=n0,
                    dens_func=dens_func,
                    p_nz=p_nz,
                    p_nr=p_nr,
                    p_nt=p_nt,
                    p_zmin=dist.lower_bound[-1]
                    if dist.lower_bound[-1] is not None else -np.inf,
                    p_zmax=dist.upper_bound[-1]
                    if dist.upper_bound[-1] is not None else +np.inf,
                    p_rmin=0,
                    p_rmax=dist.upper_bound[0]
                    if dist.upper_bound[0] is not None else +np.inf,
                    boost=self.fbpic_sim.boost,
                    z_injection_plane=z_injection_plane,
                    initialize_self_field=initialize_self_field,
                    boost_positions_in_dens_func=True)
            else:
                dist = s.initial_distribution
                fbpic_species = self.fbpic_sim.add_new_species(
                    q=s.charge,
                    m=s.mass,
                    n=n0,
                    dens_func=dens_func,
                    p_nz=p_nz,
                    p_nr=p_nr,
                    p_nt=p_nt,
                    p_zmin=dist.lower_bound[-1]
                    if dist.lower_bound[-1] is not None else -np.inf,
                    p_zmax=dist.upper_bound[-1]
                    if dist.upper_bound[-1] is not None else +np.inf,
                    p_rmax=dist.upper_bound[0]
                    if dist.upper_bound[0] is not None else +np.inf,
                    continuous_injection=s.initial_distribution.fill_in,
                    boost_positions_in_dens_func=True)

        # - For the case of a Gaussian beam
        elif (type(s.initial_distribution)==PICMI_GaussianBunchDistribution) \
             and (type(layout) == PICMI_PseudoRandomLayout):
            dist = s.initial_distribution
            gamma0_beta0 = dist.centroid_velocity[-1] / c
            gamma0 = (1 + gamma0_beta0**2)**.5
            sig_r = dist.rms_bunch_size[0]
            sig_z = dist.rms_bunch_size[-1]
            sig_gamma = dist.rms_velocity[-1] / c
            sig_vr = dist.rms_velocity[0] / gamma0
            if sig_vr != 0:
                tf = -sig_r**2 / sig_vr**2 * dist.velocity_divergence[0]
            else:
                tf = 0.
            zf = dist.centroid_position[-1] + \
                 dist.centroid_velocity[-1]/gamma0 * tf
            # Calculate size at focus and emittance
            sig_r0 = (sig_r**2 - (sig_vr * tf)**2)**0.5
            n_emit = gamma0 * sig_r0 * sig_vr / c
            # Get the number of physical particles
            n_physical_particles = dist.n_physical_particles
            if s.density_scale is not None:
                n_physical_particles *= s.density_scale
            fbpic_species = add_particle_bunch_gaussian(
                self.fbpic_sim,
                q=s.charge,
                m=s.mass,
                gamma0=gamma0,
                sig_gamma=sig_gamma,
                sig_r=sig_r0,
                sig_z=sig_z,
                n_emit=n_emit,
                n_physical_particles=n_physical_particles,
                n_macroparticles=layout.n_macroparticles,
                zf=zf,
                tf=tf,
                boost=self.fbpic_sim.boost,
                initialize_self_field=initialize_self_field)

        # - For the case of an empty species
        elif (s.initial_distribution is None) and (layout is None):
            fbpic_species = self.fbpic_sim.add_new_species(q=s.charge,
                                                           m=s.mass)

        else:
            raise ValueError('Unknown combination of layout and distribution')

        return fbpic_species

    # Redefine the method `add_diagnostic` of the parent class
    def add_diagnostic(self, diagnostic):
        # Call method of parent class
        PICMI_Simulation.add_diagnostic(self, diagnostic)

        # Handle iteration_min/max in regular diagnostic
        if type(diagnostic) in [
                PICMI_FieldDiagnostic, PICMI_ParticleDiagnostic
        ]:
            if diagnostic.step_min is None:
                iteration_min = 0
            else:
                iteration_min = diagnostic.step_min
            if diagnostic.step_max is None:
                iteration_max = np.inf
            else:
                iteration_max = diagnostic.step_max

        # Register field diagnostic
        if type(diagnostic) in [
                PICMI_FieldDiagnostic, PICMI_LabFrameFieldDiagnostic
        ]:
            if diagnostic.data_list is None:
                data_list = ['rho', 'E', 'B', 'J']
            else:
                data_list = set()  # Use set to avoid redundancy
                for data in diagnostic.data_list:
                    if data in ['Ex', 'Ey', 'Ez', 'E']:
                        data_list.add('E')
                    elif data in ['Bx', 'By', 'Bz', 'B']:
                        data_list.add('B')
                    elif data in ['Jx', 'Jy', 'Jz', 'J']:
                        data_list.add('J')
                    elif data == 'rho':
                        data_list.add('rho')
                data_list = list(data_list)

        if type(diagnostic) == PICMI_FieldDiagnostic:

            diag = FieldDiagnostic(period=diagnostic.period,
                                   fldobject=self.fbpic_sim.fld,
                                   comm=self.fbpic_sim.comm,
                                   fieldtypes=data_list,
                                   write_dir=diagnostic.write_dir,
                                   iteration_min=iteration_min,
                                   iteration_max=iteration_max)

            # Register particle density diagnostic
            rho_density_list = []
            if diagnostic.data_list is not None:
                for data in diagnostic.data_list:
                    if data.startswith('rho_'):
                        # particle density diagnostics, rho_speciesname
                        rho_density_list.append(data)
            if rho_density_list:
                species_dict = {}
                for data in rho_density_list:
                    sname = data[4:]
                    for s in self.species:
                        if s.name == sname:
                            species_dict[s.name] = s.fbpic_species
                pdd_diag = ParticleChargeDensityDiagnostic(
                    period=diagnostic.period,
                    sim=self.fbpic_sim,
                    species=species_dict,
                    write_dir=diagnostic.write_dir,
                    iteration_min=iteration_min,
                    iteration_max=iteration_max)
                self.fbpic_sim.diags.append(pdd_diag)

        elif type(diagnostic) == PICMI_LabFrameFieldDiagnostic:
            diag = BackTransformedFieldDiagnostic(
                zmin_lab=diagnostic.grid.lower_bound[1],
                zmax_lab=diagnostic.grid.upper_bound[1],
                v_lab=c,
                dt_snapshots_lab=diagnostic.dt_snapshots,
                Ntot_snapshots_lab=diagnostic.num_snapshots,
                gamma_boost=self.gamma_boost,
                period=100,
                fldobject=self.fbpic_sim.fld,
                comm=self.fbpic_sim.comm,
                fieldtypes=diagnostic.data_list,
                write_dir=diagnostic.write_dir)
        # Register particle diagnostic
        elif type(diagnostic) in [
                PICMI_ParticleDiagnostic, PICMI_LabFrameParticleDiagnostic
        ]:
            species_dict = {}
            for s in diagnostic.species:
                if s.name is None:
                    raise ValueError('When using a species in a diagnostic, '
                                     'its name must be set.')
                species_dict[s.name] = s.fbpic_species
            if diagnostic.data_list is None:
                data_list = ['position', 'momentum', 'weighting']
            else:
                data_list = diagnostic.data_list
            if type(diagnostic) == PICMI_ParticleDiagnostic:
                diag = ParticleDiagnostic(period=diagnostic.period,
                                          species=species_dict,
                                          comm=self.fbpic_sim.comm,
                                          particle_data=data_list,
                                          write_dir=diagnostic.write_dir,
                                          iteration_min=iteration_min,
                                          iteration_max=iteration_max)
            else:
                diag = BackTransformedParticleDiagnostic(
                    zmin_lab=diagnostic.grid.lower_bound[1],
                    zmax_lab=diagnostic.grid.upper_bound[1],
                    v_lab=c,
                    dt_snapshots_lab=diagnostic.dt_snapshots,
                    Ntot_snapshots_lab=diagnostic.num_snapshots,
                    gamma_boost=self.gamma_boost,
                    period=100,
                    fldobject=self.fbpic_sim.fld,
                    species=species_dict,
                    comm=self.fbpic_sim.comm,
                    particle_data=data_list,
                    write_dir=diagnostic.write_dir)

        # Add it to the FBPIC simulation
        self.fbpic_sim.diags.append(diag)

    # Redefine the method `add_diagnostic` of the parent class
    def add_applied_field(self, applied_field):
        # Call method of parent class
        PICMI_Simulation.add_applied_field(self, applied_field)

        if type(applied_field) == PICMI_Mirror:
            assert applied_field.z_front_location is not None
            mirror = Mirror(z_lab=applied_field.z_front_location,
                            n_cells=applied_field.number_of_cells,
                            gamma_boost=self.fbpic_sim.boost.gamma0)
            self.fbpic_sim.mirrors.append(mirror)

        elif type(applied_field) == PICMI_ConstantAppliedField:
            # TODO: Handle bounds
            for field_name in ['Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz']:
                field_value = getattr(applied_field, field_name)
                if field_value is None:
                    continue

                def field_func(F, x, y, z, t, amplitude, length_scale):
                    return (F + amplitude * field_value)

                # Pass it to FBPIC
                self.fbpic_sim.external_fields.append(
                    ExternalField(field_func, field_name, 1., 0.))

        elif type(applied_field) == PICMI_AnalyticAppliedField:
            # TODO: Handle bounds
            for field_name in ['Ex', 'Ey', 'Ez', 'Bx', 'By', 'Bz']:
                # Extract expression and execute it inside a function definition
                expression = getattr(applied_field, field_name + '_expression')
                if expression is None:
                    continue
                fieldfunc = None
                define_function_code = \
                """def fieldfunc( F, x, y, z, t, amplitude, length_scale ):\n    return( F + amplitude * %s )""" %expression
                # Take into account user-defined variables
                for k in applied_field.user_defined_kw:
                    define_function_code = \
                        "%s = %s\n" %(k,applied_field.user_defined_kw[k]) \
                        + define_function_code
                exec(define_function_code, globals())
                # Pass it to FBPIC
                self.fbpic_sim.external_fields.append(
                    ExternalField(fieldfunc, field_name, 1., 0.))

        else:
            raise ValueError("Unrecognized `applied_field` type.")

    # Redefine the method `step` of the parent class
    def step(self, nsteps=None):
        if nsteps is None:
            nsteps = self.max_steps
        self.fbpic_sim.step(nsteps, **self.step_kw)
Exemple #6
0
class Simulation(PICMI_Simulation):

    # Redefine the `init` method, as required by the picmi `_ClassWithInit`
    def init(self, kw):

        # Get the grid
        grid = self.solver.grid
        if not type(grid) == PICMI_CylindricalGrid:
            raise ValueError('When using fbpic with PICMI, '
                             'the grid needs to be a CylindricalGrid object.')
        # Check rmin and boundary conditions
        assert grid.rmin == 0.
        assert grid.bc_zmin == grid.bc_zmax
        assert grid.bc_zmax in ['periodic', 'open']
        assert grid.bc_rmax in ['reflective', 'open']

        # Determine timestep
        if self.solver.cfl is not None:
            dz = (grid.zmax - grid.zmin) / grid.nz
            dt = self.solver.cfl * dz / c
        elif self.time_step_size is not None:
            dt = self.time_step_size
        else:
            raise ValueError('You need to either set the `cfl` of the solver\n'
                             'or the `timestep_size` of the `Simulation`.')

        # Convert API for the smoother
        if self.solver.source_smoother is None:
            smoother = BinomialSmoother()
        else:
            smoother = BinomialSmoother(
                n_passes=self.solver.source_smoother.n_pass,
                compensator=self.solver.source_smoother.compensation)

        # Initialize and store the FBPIC simulation object
        self.fbpic_sim = FBPICSimulation(Nz=int(grid.nz),
                                         zmin=grid.zmin,
                                         zmax=grid.zmax,
                                         Nr=int(grid.nr),
                                         rmax=grid.rmax,
                                         Nm=grid.n_azimuthal_modes,
                                         dt=dt,
                                         use_cuda=True,
                                         smoother=smoother,
                                         n_order=32,
                                         boundaries={
                                             'z': grid.bc_zmax,
                                             'r': grid.bc_rmax
                                         })

        # Set the moving window
        if grid.moving_window_zvelocity is not None:
            self.fbpic_sim.set_moving_window(grid.moving_window_zvelocity)

    # Redefine the method `add_laser` from the PICMI Simulation class
    def add_laser(self, laser, injection_method):
        # Call method of parent class
        PICMI_Simulation.add_laser(self, laser, injection_method)

        # Handle injection method
        assert type(injection_method) == PICMI_LaserAntenna
        # Handle laser profile method
        if type(laser) == PICMI_GaussianLaser:
            assert laser.propagation_direction[0] == 0.
            assert laser.propagation_direction[1] == 0.
            assert (laser.zeta is None) or (laser.zeta == 0)
            assert (laser.beta is None) or (laser.beta == 0)
            phi2_chirp = laser.phi2
            if phi2_chirp is None:
                phi2_chirp = 0
            polarization_angle = np.arctan2(laser.polarization_direction[1],
                                            laser.polarization_direction[0])
            laser_profile = GaussianLaser(a0=laser.a0,
                                          waist=laser.waist,
                                          z0=laser.centroid_position[-1],
                                          zf=laser.focal_position[-1],
                                          tau=laser.duration,
                                          theta_pol=polarization_angle,
                                          phi2_chirp=phi2_chirp)
        else:
            raise ValueError('Unknown laser profile: %s' %
                             type(injection_method))

        # Inject the laser
        add_laser_pulse(self.fbpic_sim,
                        laser_profile,
                        method='antenna',
                        z0_antenna=injection_method.position[-1])

    # Redefine the method `add_species` from the PICMI Simulation class
    def add_species(self, species, layout, initialize_self_field=False):
        # Call method of parent class
        PICMI_Simulation.add_species(self, species, layout,
                                     initialize_self_field)

        # Extract list of species
        if type(species) == PICMI_Species:
            species_instances_list = [species]
        elif type(species) == PICMI_MultiSpecies:
            species_instances_list = species.species_instances_list
        else:
            raise ValueError('Unknown type: %s' % type(species))

        # Loop over species and create FBPIC species
        for s in species_instances_list:

            # Get their charge and mass
            if s.particle_type is not None:
                s.charge = particle_charge[s.particle_type]
                s.mass = particle_mass[s.particle_type]
            # If `charge_state` is set, redefine the charge and mass
            if s.charge_state is not None:
                s.charge = s.charge_state * e
                s.mass -= s.charge_state * m_e

            # Add the species to the FBPIC simulation
            fbpic_species = self._create_new_fbpic_species(
                s, layout, initialize_self_field)

            # Register a pointer to the FBPIC species in the PICMI species itself
            # (Useful for particle diagnostics later on)
            s.fbpic_species = fbpic_species

        # Loop over species and handle ionization
        for s in species_instances_list:
            for interaction in s.interactions:
                assert interaction[0] == 'ionization'
                assert interaction[1] == 'ADK'
                picmi_target = interaction[2]
                if not hasattr(picmi_target, 'fbpic_species'):
                    raise RuntimeError(
                        'For ionization with PICMI+FBPIC:\n'
                        'You need to add the target species to the simulation,'
                        ' before the other species.')
                fbpic_target = picmi_target.fbpic_species
                fbpic_source = s.fbpic_species
                fbpic_source.make_ionizable(element=s.particle_type,
                                            level_start=s.charge_state,
                                            target_species=fbpic_target)

    def _create_new_fbpic_species(self, s, layout, initialize_self_field):

        # - For the case of a plasma defined in a gridded layout
        if (type(s.initial_distribution)==PICMI_AnalyticDistribution) and \
            (type(layout) == PICMI_GriddedLayout):
            assert initialize_self_field == False
            import numexpr
            density_expression = s.initial_distribution.density_expression
            if s.density_scale is not None:
                density_expression = "%f*(%s)" \
                     %(s.density_scale, density_expression)

            def dens_func(z, r):
                n = numexpr.evaluate(density_expression)
                return n

            p_nr = layout.n_macroparticle_per_cell[0]
            p_nt = layout.n_macroparticle_per_cell[1]
            p_nz = layout.n_macroparticle_per_cell[2]
            fbpic_species = self.fbpic_sim.add_new_species(
                q=s.charge,
                m=s.mass,
                n=1.,
                dens_func=dens_func,
                p_nz=p_nz,
                p_nr=p_nr,
                p_nt=p_nt,
                p_zmin=s.initial_distribution.lower_bound[-1],
                p_zmax=s.initial_distribution.upper_bound[-1],
                continuous_injection=s.initial_distribution.fill_in)

        # - For the case of a Gaussian beam
        elif (type(s.initial_distribution)==PICMI_GaussianBunchDistribution) \
             and (type(layout) == PICMI_PseudoRandomLayout):
            dist = s.initial_distribution
            gamma0_beta0 = dist.centroid_velocity[-1] / c
            gamma0 = (1 + gamma0_beta0**2)**.5
            sig_r = dist.rms_bunch_size[0]
            sig_z = dist.rms_bunch_size[-1]
            sig_gamma = dist.rms_velocity[-1] / c
            sig_vr = dist.rms_velocity[0] / gamma0
            if sig_vr != 0:
                tf = -sig_r**2 / sig_vr**2 * dist.velocity_divergence[0]
            else:
                tf = 0.
            zf = dist.centroid_position[-1] + \
                 dist.centroid_velocity[-1]/gamma0 * tf
            # Calculate size at focus and emittance
            sig_r0 = (sig_r**2 - (sig_vr * tf)**2)**0.5
            n_emit = gamma0 * sig_r0 * sig_vr / c
            # Get the number of physical particles
            n_physical_particles = dist.n_physical_particles
            if s.density_scale is not None:
                n_physical_particles *= s.density_scale
            fbpic_species = add_particle_bunch_gaussian(
                self.fbpic_sim,
                q=s.charge,
                m=s.mass,
                gamma0=gamma0,
                sig_gamma=sig_gamma,
                sig_r=sig_r0,
                sig_z=sig_z,
                n_emit=n_emit,
                n_physical_particles=n_physical_particles,
                n_macroparticles=layout.n_macroparticles,
                zf=zf,
                tf=tf,
                initialize_self_field=initialize_self_field)

        # - For the case of an empty species
        elif (s.initial_distribution is None) and (layout is None):
            fbpic_species = self.fbpic_sim.add_new_species(q=s.charge,
                                                           m=s.mass)

        else:
            raise ValueError('Unknown combination of layout and distribution')

        return fbpic_species

    # Redefine the method `add_diagnostic` of the parent class
    def add_diagnostic(self, diagnostic):
        # Call method of parent class
        PICMI_Simulation.add_diagnostic(self, diagnostic)

        # Handle diagnostic
        if diagnostic.step_min is None:
            iteration_min = 0
        else:
            iteration_min = diagnostic.step_min
        if diagnostic.step_max is None:
            iteration_max = np.inf
        else:
            iteration_max = diagnostic.step_max
        # Register field diagnostic
        if type(diagnostic) == PICMI_FieldDiagnostic:
            diag = FieldDiagnostic(period=diagnostic.period,
                                   fldobject=self.fbpic_sim.fld,
                                   comm=self.fbpic_sim.comm,
                                   fieldtypes=diagnostic.data_list,
                                   write_dir=diagnostic.write_dir,
                                   iteration_min=iteration_min,
                                   iteration_max=iteration_max)
        # Register particle diagnostic
        elif type(diagnostic) == PICMI_ParticleDiagnostic:
            species_dict = {}
            for s in diagnostic.species:
                if s.name is None:
                    raise ValueError('When using a species in a diagnostic, '
                                     'its name must be set.')
                species_dict[s.name] = s.fbpic_species
            diag = ParticleDiagnostic(period=diagnostic.period,
                                      species=species_dict,
                                      comm=self.fbpic_sim.comm,
                                      particle_data=diagnostic.data_list,
                                      write_dir=diagnostic.write_dir,
                                      iteration_min=iteration_min,
                                      iteration_max=iteration_max)

        # Add it to the FBPIC simulation
        self.fbpic_sim.diags.append(diag)

    # Redefine the method `step` of the parent class
    def step(self, nsteps):
        self.fbpic_sim.step(nsteps)
                     dt,
                     zmin=zmin,
                     boundaries={
                         'z': 'open',
                         'r': 'reflective'
                     },
                     n_order=n_order,
                     use_cuda=use_cuda,
                     use_all_mpi_ranks=False)

    # Create the plasma electrons
    elec = sim.add_new_species(q=-e,
                               m=m_e,
                               n=n_e,
                               dens_func=dens_func,
                               p_zmin=p_zmin,
                               p_zmax=p_zmax,
                               p_rmax=p_rmax,
                               p_nz=p_nz,
                               p_nr=p_nr,
                               p_nt=p_nt)

    # Load initial fields
    # Add a laser to the fields of the simulation
    add_laser(sim, a0, w0, ctau, z0)

    if use_restart is True:
        # Load the fields and particles from the latest checkpoint file
        restart_from_checkpoint(sim)

    # Configure the moving window
    sim.set_moving_window(v=v_window)
def run_external_laser_field_simulation(show, gamma_boost=None):
    """
    Runs a simulation with a set of particles whose motion corresponds
    to that of a particle that is initially at rest (in the lab frame)
    before being reached by a plane wave (propagating to the right)

    In the lab frame, the motion is given by
    ux = a0 sin ( k0(z-ct) )
    uz = ux^2 / 2    (from the conservation of gamma - uz)

    In the boosted frame, the motion is given by
    ux = a0 sin ( k0 gamma0 (1-beta0) (z-ct) )
    uz = - gamma0 beta0 + gamma0 (1-beta0) ux^2 / 2
    """
    # Time parameters
    dt = lambda0 / c / 200  # 200 points per laser period
    N_step = 400  # Two laser periods

    # Initialize BoostConverter object
    if gamma_boost is None:
        boost = BoostConverter(gamma0=1.)
    else:
        boost = BoostConverter(gamma_boost)
    # Reduce time resolution, for the case of a boosted simulation
    if gamma_boost is not None:
        dt = dt * (1. + boost.beta0) / boost.gamma0

    # Initialize the simulation
    sim = Simulation(Nz,
                     zmax,
                     Nr,
                     rmax,
                     Nm,
                     dt,
                     initialize_ions=False,
                     zmin=zmin,
                     use_cuda=use_cuda,
                     boundaries='periodic',
                     gamma_boost=gamma_boost)
    # Add electrons
    sim.ptcl = []
    sim.add_new_species(-e,
                        m_e,
                        n=n,
                        p_rmax=p_rmax,
                        p_nz=p_nz,
                        p_nr=p_nr,
                        p_nt=p_nt)

    # Add the external fields
    sim.external_fields = [
        ExternalField(laser_func,
                      'Ex',
                      a0 * m_e * c**2 * k0 / e,
                      lambda0,
                      gamma_boost=gamma_boost),
        ExternalField(laser_func,
                      'By',
                      a0 * m_e * c * k0 / e,
                      lambda0,
                      gamma_boost=gamma_boost)
    ]

    # Prepare the arrays for the time history of the pusher
    Nptcl = sim.ptcl[0].Ntot
    x = np.zeros((N_step, Nptcl))
    y = np.zeros((N_step, Nptcl))
    z = np.zeros((N_step, Nptcl))
    ux = np.zeros((N_step, Nptcl))
    uy = np.zeros((N_step, Nptcl))
    uz = np.zeros((N_step, Nptcl))

    # Prepare the particles with proper transverse and longitudinal momentum,
    # at t=0 in the simulation frame
    k0p = k0 * boost.gamma0 * (1. - boost.beta0)
    sim.ptcl[0].ux = a0 * np.sin(k0p * sim.ptcl[0].z)
    sim.ptcl[0].uz[:] = -boost.gamma0*boost.beta0 \
                    + boost.gamma0*(1-boost.beta0)*0.5*sim.ptcl[0].ux**2

    # Push the particles over N_step and record the corresponding history
    for i in range(N_step):
        # Record the history
        x[i, :] = sim.ptcl[0].x[:]
        y[i, :] = sim.ptcl[0].y[:]
        z[i, :] = sim.ptcl[0].z[:]
        ux[i, :] = sim.ptcl[0].ux[:]
        uy[i, :] = sim.ptcl[0].uy[:]
        uz[i, :] = sim.ptcl[0].uz[:]
        # Take a simulation step
        sim.step(1)

    # Compute the analytical solution
    t = sim.dt * np.arange(N_step)
    # Conservation of ux
    ux_analytical = np.zeros((N_step, Nptcl))
    uz_analytical = np.zeros((N_step, Nptcl))
    for i in range(N_step):
        ux_analytical[i, :] = a0 * np.sin(k0p * (z[i, :] - c * t[i]))
        uz_analytical[i,:] = -boost.gamma0*boost.beta0 \
                    + boost.gamma0*(1-boost.beta0)*0.5*ux_analytical[i,:]**2

    # Show the results
    if show:
        import matplotlib.pyplot as plt
        plt.figure(figsize=(10, 5))

        plt.subplot(211)
        plt.plot(t, ux_analytical, '--')
        plt.plot(t, ux, 'o')
        plt.xlabel('t')
        plt.ylabel('ux')

        plt.subplot(212)
        plt.plot(t, uz_analytical, '--')
        plt.plot(t, uz, 'o')
        plt.xlabel('t')
        plt.ylabel('uz')

        plt.show()
    else:
        assert np.allclose(ux, ux_analytical, atol=5.e-2)
        assert np.allclose(uz, uz_analytical, atol=5.e-2)
def run_fbpic(job: Job) -> None:
    """
    This ``signac-flow`` operation runs a ``fbpic`` simulation.

    :param job: the job instance is a handle to the data of a unique statepoint
    """
    from fbpic.main import Simulation
    from fbpic.lpa_utils.laser import add_laser_pulse, GaussianLaser
    from fbpic.openpmd_diag import FieldDiagnostic, ParticleDiagnostic

    # The density profile
    def dens_func(z: np.ndarray, r: np.ndarray) -> np.ndarray:
        """Returns relative density at position z and r.

        :param z: longitudinal positions, 1d array
        :param r: radial positions, 1d array
        :return: a 1d array ``n`` containing the density (between 0 and 1) at the given positions (z, r)
        """
        # Allocate relative density
        n = np.ones_like(z)

        # Make linear ramp
        n = np.where(
            z < job.sp.ramp_start + job.sp.ramp_length,
            (z - job.sp.ramp_start) / job.sp.ramp_length,
            n,
        )

        # Supress density before the ramp
        n = np.where(z < job.sp.ramp_start, 0.0, n)

        return n

    # plot density profile for checking
    all_z = np.linspace(job.sp.zmin, job.sp.p_zmax, 1000)
    dens = dens_func(all_z, 0.0)

    width_inch = job.sp.p_zmax / 1e-5
    major_locator = pyplot.MultipleLocator(10)
    minor_locator = pyplot.MultipleLocator(5)
    major_locator.MAXTICKS = 10000
    minor_locator.MAXTICKS = 10000

    def mark_on_plot(*, ax, parameter: str, y=1.1):
        ax.annotate(s=parameter,
                    xy=(job.sp[parameter] * 1e6, y),
                    xycoords="data")
        ax.axvline(x=job.sp[parameter] * 1e6, linestyle="--", color="red")
        return ax

    fig, ax = pyplot.subplots(figsize=(width_inch, 4.8))
    ax.plot(all_z * 1e6, dens)
    ax.set_xlabel(r"$%s \;(\mu m)$" % "z")
    ax.set_ylim(-0.1, 1.2)
    ax.set_xlim(job.sp.zmin * 1e6 - 20, job.sp.p_zmax * 1e6 + 20)
    ax.set_ylabel("Density profile $n$")
    ax.xaxis.set_major_locator(major_locator)
    ax.xaxis.set_minor_locator(minor_locator)

    mark_on_plot(ax=ax, parameter="zmin")
    mark_on_plot(ax=ax, parameter="zmax")
    mark_on_plot(ax=ax, parameter="p_zmin", y=0.9)
    mark_on_plot(ax=ax, parameter="z0", y=0.8)
    mark_on_plot(ax=ax, parameter="zf", y=0.6)
    mark_on_plot(ax=ax, parameter="ramp_start", y=0.7)
    mark_on_plot(ax=ax, parameter="L_interact")
    mark_on_plot(ax=ax, parameter="p_zmax")

    ax.annotate(s="ramp_start + ramp_length",
                xy=(job.sp.ramp_start * 1e6 + job.sp.ramp_length * 1e6, 1.1),
                xycoords="data")
    ax.axvline(x=job.sp.ramp_start * 1e6 + job.sp.ramp_length * 1e6,
               linestyle="--",
               color="red")

    ax.fill_between(all_z * 1e6, dens, alpha=0.5)

    fig.savefig(job.fn("check_density.png"))

    # redirect stdout to "stdout.txt"
    orig_stdout = sys.stdout
    f = open(job.fn("stdout.txt"), "w")
    sys.stdout = f

    # Initialize the simulation object
    sim = Simulation(
        job.sp.Nz,
        job.sp.zmax,
        job.sp.Nr,
        job.sp.rmax,
        job.sp.Nm,
        job.sp.dt,
        n_e=None,  # no electrons
        zmin=job.sp.zmin,
        boundaries={
            "z": "open",
            "r": "reflective"
        },
        n_order=-1,
        use_cuda=True,
        verbose_level=2,
    )

    # Create a Gaussian laser profile
    laser_profile = GaussianLaser(a0=job.sp.a0,
                                  waist=job.sp.w0,
                                  tau=job.sp.ctau / c_light,
                                  z0=job.sp.z0,
                                  zf=job.sp.zf,
                                  theta_pol=0.,
                                  lambda0=job.sp.lambda0,
                                  cep_phase=0.,
                                  phi2_chirp=0.,
                                  propagation_direction=1)

    # Add it to the simulation
    add_laser_pulse(sim,
                    laser_profile,
                    gamma_boost=None,
                    method='direct',
                    z0_antenna=None,
                    v_antenna=0.)

    # Create the plasma electrons
    elec = sim.add_new_species(q=-q_e,
                               m=m_e,
                               n=job.sp.n_e,
                               dens_func=dens_func,
                               p_zmin=job.sp.p_zmin,
                               p_zmax=job.sp.p_zmax,
                               p_rmax=job.sp.p_rmax,
                               p_nz=job.sp.p_nz,
                               p_nr=job.sp.p_nr,
                               p_nt=job.sp.p_nt)

    # Track electrons, useful for betatron radiation
    # elec.track(sim.comm)

    # Configure the moving window
    sim.set_moving_window(v=c_light)

    # Add diagnostics
    write_dir = os.path.join(job.ws, "diags")
    sim.diags = [
        FieldDiagnostic(job.sp.diag_period,
                        sim.fld,
                        comm=sim.comm,
                        write_dir=write_dir,
                        fieldtypes=["rho", "E"]),
        ParticleDiagnostic(job.sp.diag_period, {"electrons": elec},
                           select={"uz": [1., None]},
                           comm=sim.comm,
                           write_dir=write_dir,
                           particle_data=["momentum", "weighting"]),
    ]

    # Plot the Ex component of the laser
    # Get the fields in the half-plane theta=0 (Sum mode 0 and mode 1)
    gathered_grids = [
        sim.comm.gather_grid(sim.fld.interp[m]) for m in range(job.sp.Nm)
    ]

    rgrid = gathered_grids[0].r
    zgrid = gathered_grids[0].z

    # construct the Er field for theta=0
    Er = gathered_grids[0].Er.T.real

    for m in range(1, job.sp.Nm):
        # There is a factor 2 here so as to comply with the convention in
        # Lifschitz et al., which is also the convention adopted in Warp Circ
        Er += 2 * gathered_grids[m].Er.T.real

    e0 = electric_field_amplitude_norm(lambda0=job.sp.lambda0)

    fig = pyplot.figure(figsize=(8, 8))
    sliceplots.Plot2D(
        fig=fig,
        arr2d=Er / e0,
        h_axis=zgrid * 1e6,
        v_axis=rgrid * 1e6,
        zlabel=r"$E_r/E_0$",
        xlabel=r"$z \;(\mu m)$",
        ylabel=r"$r \;(\mu m)$",
        extent=(
            zgrid[0] * 1e6,  # + 40
            zgrid[-1] * 1e6,  # - 20
            rgrid[0] * 1e6,
            rgrid[-1] * 1e6,  # - 15,
        ),
        cbar=True,
        vmin=-3,
        vmax=3,
        hslice_val=0.0,  # do a 1D slice through the middle of the simulation box
    )
    fig.savefig(job.fn('check_laser.png'))

    # set deterministic random seed
    np.random.seed(0)

    # Run the simulation
    sim.step(job.sp.N_step, show_progress=False)

    # redirect stdout back and close "stdout.txt"
    sys.stdout = orig_stdout
    f.close()
def run_continuous_injection(gamma_boost,
                             ramp,
                             p_zmin,
                             p_zmax,
                             show,
                             N_check=2):
    # Chose the time step
    dt = (zmax - zmin) / Nz / c

    def dens_func(z, r):
        dens = np.ones_like(z)
        # Make the density smooth at rmax
        dens = np.where(r > rmax - smooth_r,
                        np.cos(0.5 * np.pi * (r - smooth_r) / smooth_r)**2,
                        dens)
        # Make the density 0 below p_zmin
        dens = np.where(z < p_zmin, 0., dens)
        # Make a linear ramp
        dens = np.where((z >= p_zmin) & (z < p_zmin + ramp),
                        (z - p_zmin) / ramp * dens, dens)
        return (dens)

    # Initialize the different structures
    sim = Simulation(Nz,
                     zmax,
                     Nr,
                     rmax,
                     Nm,
                     dt,
                     p_zmin,
                     p_zmax,
                     0,
                     p_rmax,
                     p_nz,
                     p_nr,
                     p_nt,
                     0.5 * n,
                     dens_func=dens_func,
                     initialize_ions=False,
                     zmin=zmin,
                     use_cuda=use_cuda,
                     gamma_boost=gamma_boost,
                     boundaries='open')

    # Add another species with a different number of particles per cell
    # and with a finite temperature
    uth = 0.0001
    sim.add_new_species(-e,
                        m_e,
                        0.5 * n,
                        dens_func,
                        2 * p_nz,
                        2 * p_nr,
                        2 * p_nt,
                        p_zmin,
                        p_zmax,
                        0,
                        p_rmax,
                        ux_th=uth,
                        uy_th=uth,
                        uz_th=uth)

    # Set the moving window, which handles the continuous injection
    # The moving window has an arbitrary velocity (0.7*c) so as to check
    # that the injection is correct in this case also
    sim.set_moving_window(v=c)

    # Check that the density is correct after different timesteps
    N_step = int(Nz / N_check / 2)
    for i in range(N_check):
        sim.step(N_step, move_momenta=False)
        check_density(sim, gamma_boost, dens_func, show)
Exemple #11
0
def run_simulation( gamma_boost, show ):
    """
    Run a simulation with a relativistic electron bunch crosses a laser

    Parameters
    ----------
    gamma_boost: float
        The Lorentz factor of the frame in which the simulation is carried out.
    show: bool
        Whether to show a plot of the angular distribution
    """
    # Boosted frame
    boost = BoostConverter(gamma_boost)

    # The simulation timestep
    diag_period = 100
    N_step = 101     # Number of iterations to perform
    # Calculate timestep to resolve the interaction with enough points
    laser_duration_boosted, = boost.copropag_length(
        [laser_duration], beta_object=-1 )
    bunch_sigma_z_boosted, = boost.copropag_length(
        [bunch_sigma_z], beta_object=1 )
    dt = (4*laser_duration_boosted + bunch_sigma_z_boosted/c)/N_step

    # Initialize the simulation object
    zmax, zmin = boost.copropag_length( [zmax_lab, zmin_lab], beta_object=1. )
    sim = Simulation( Nz, zmax, Nr, rmax, Nm, dt,
        dens_func=None, zmin=zmin, boundaries={'z':'periodic', 'r':'reflective'},
        use_cuda=use_cuda )
    # Remove particles that were previously created
    sim.ptcl = []
    print( 'Initialized simulation' )

    # Add electron bunch (automatically converted to boosted-frame)
    add_elec_bunch_gaussian( sim, sig_r=1.e-6, sig_z=bunch_sigma_z,
        n_emit=0., gamma0=gamma_bunch_mean, sig_gamma=gamma_bunch_rms,
        Q=Q_bunch, N=N_bunch, tf=0.0, zf=0.5*(zmax+zmin), boost=boost )
    elec = sim.ptcl[0]
    print( 'Initialized electron bunch' )
    # Add a photon species
    photons = sim.add_new_species( q=0, m=0 )
    print( 'Initialized photons' )

    # Activate Compton scattering for electrons of the bunch
    elec.activate_compton( target_species=photons,
        laser_energy=laser_energy, laser_wavelength=laser_wavelength,
        laser_waist=laser_waist, laser_ctau=laser_ctau,
        laser_initial_z0=laser_initial_z0, ratio_w_electron_photon=50,
        boost=boost )
    print( 'Activated Compton' )

    # Add diagnostics
    if write_hdf5:
        sim.diags = [ ParticleDiagnostic( diag_period,
            species={'electrons': elec, 'photons': photons}, comm=sim.comm ) ]

    # Get initial total momentum
    initial_total_elec_px = (elec.w*elec.ux).sum() * m_e * c
    initial_total_elec_py = (elec.w*elec.uy).sum() * m_e * c
    initial_total_elec_pz = (elec.w*elec.uz).sum() * m_e * c

    ### Run the simulation
    for species in sim.ptcl:
        species.send_particles_to_gpu()

    for i_step in range( N_step ):
        for species in sim.ptcl:
            species.push_x( 0.5*sim.dt )
        elec.handle_elementary_processes( sim.time + 0.5*sim.dt )
        for species in sim.ptcl:
            species.push_x( 0.5*sim.dt )
        # Increment time and run diagnostics
        sim.time += sim.dt
        sim.iteration += 1
        for diag in sim.diags:
            diag.write( sim.iteration )
        # Print fraction of photons produced
        if i_step%10 == 0:
            for species in sim.ptcl:
                species.receive_particles_from_gpu()
            simulated_frac = photons.w.sum()/elec.w.sum()
            for species in sim.ptcl:
                species.send_particles_to_gpu()
            print( 'Iteration %d: Photon fraction per electron = %f' \
                       %(i_step, simulated_frac) )

    for species in sim.ptcl:
        species.receive_particles_from_gpu()


    # Check estimation of photon fraction
    check_photon_fraction( simulated_frac )
    # Check conservation of momentum (is only conserved )
    if elec.compton_scatterer.ratio_w_electron_photon == 1:
        check_momentum_conservation( gamma_boost, photons, elec,
          initial_total_elec_px, initial_total_elec_py, initial_total_elec_pz )

    # Transform the photon momenta back into the lab frame
    photon_u = 1./photons.inv_gamma
    photon_lab_pz = boost.gamma0*( photons.uz + boost.beta0*photon_u )
    photon_lab_p = boost.gamma0*( photon_u + boost.beta0*photons.uz )

    # Plot the scaled angle and frequency
    if show:
        import matplotlib.pyplot as plt
        # Bin the photons on a grid in frequency and angle
        freq_min = 0.5
        freq_max = 1.2
        N_freq = 500
        gammatheta_min = 0.
        gammatheta_max = 1.
        N_gammatheta = 100
        hist_range = [[freq_min, freq_max], [gammatheta_min, gammatheta_max]]
        extent = [freq_min, freq_max, gammatheta_min, gammatheta_max]
        fundamental_frequency = 4*gamma_bunch_mean**2*c/laser_wavelength
        photon_scaled_freq = photon_lab_p*c / (h*fundamental_frequency)
        gamma_theta = gamma_bunch_mean * np.arccos(photon_lab_pz/photon_lab_p)
        grid, freq_bins, gammatheta_bins = np.histogram2d(
            photon_scaled_freq, gamma_theta, weights=photons.w,
            range=hist_range, bins=[ N_freq, N_gammatheta ] )
        # Normalize by solid angle, frequency and number of photons
        dw = (freq_bins[1]-freq_bins[0]) * 2*np.pi * fundamental_frequency
        dtheta = ( gammatheta_bins[1]-gammatheta_bins[0] )/gamma_bunch_mean
        domega = 2.*np.pi*np.sin( gammatheta_bins/gamma_bunch_mean )*dtheta
        grid /= dw * domega[np.newaxis, 1:] * elec.w.sum()
        grid = np.where( grid==0, np.nan, grid )
        plt.imshow( grid.T, origin='lower', extent=extent,
                    cmap='gist_earth', aspect='auto', vmax=1.8e-16 )
        plt.title('Particles, $d^2N/d\omega \,d\Omega$')
        plt.xlabel('Scaled energy ($\omega/4\gamma^2\omega_\ell$)')
        plt.ylabel(r'$\gamma \theta$' )
        plt.colorbar()
        # Plot theory
        plt.plot( 1./( 1 + gammatheta_bins**2), gammatheta_bins, color='r' )
        plt.show()
        plt.clf()