Exemple #1
0
    def reject_outliers(self):
        """
        Reject outliers peaks with a distance to the calculated peak position of
        more than self.inp.fit['limit'][1] times the mean distance for the given grain	
		
		Jette Oddershede, Risoe DTU, May 15 2008
        """
		
        g = self.grain_values()
        self.inp.newreject = 0
        self.inp.fit['newreject_grain'] = []
#        self.inp.rerefine = []
        #value = []
        new = 1
        while new == 1:
            new = 0
            for i in range(self.inp.no_grains):
                #value.append([])
                if i+1 in self.inp.fit['skip']:
                    pass
                else:		
                    for j in range(self.inp.nrefl[i]-1,-1,-1): # loop backwards to make pop work
                        value = fcn.peak(lsqr.mg.values['a'],lsqr.mg.values['b'],lsqr.mg.values['c'],lsqr.mg.values['alpha'],lsqr.mg.values['beta'],lsqr.mg.values['gamma'],
                                        self.inp.h[i][j],self.inp.k[i][j],self.inp.l[i][j],
                                        self.inp.w[self.inp.id[i][j]],self.inp.dety[self.inp.id[i][j]],self.inp.detz[self.inp.id[i][j]],
                                        #n.array([self.inp.Syy[self.inp.id[i][j]],self.inp.Szz[self.inp.id[i][j]],self.inp.Sww[self.inp.id[i][j]]]),
                                        self.inp.vars[i][j], 
                                        self.mg.values['wx'],self.mg.values['wy'],
                                        self.mg.values['tx'],self.mg.values['ty'],self.mg.values['tz'],
                                        self.mg.values['py'],self.mg.values['pz'],
                                        self.mg.values['cy'],self.mg.values['cz'],
                                        self.mg.values['L'],
                                        self.mg.values['x%s' %i],self.mg.values['y%s' %i],self.mg.values['z%s' %i], 
                                        self.inp.rod[i][0]+self.mg.values['rodx%s' %i],
                                        self.inp.rod[i][1]+self.mg.values['rody%s' %i],
                                        self.inp.rod[i][2]+self.mg.values['rodz%s' %i],
                                        self.mg.values['epsaa%s' %i],self.mg.values['epsab%s' %i],self.mg.values['epsac%s' %i], 
                                        self.mg.values['epsbb%s' %i],self.mg.values['epsbc%s' %i],self.mg.values['epscc%s' %i]) 
                        if value > self.inp.fit['limit'][1]*g[i]/self.inp.nrefl[i]:
                            new = 1
                            print('Rejected peak id %i from grain %i (hkl: %i %i %i, limit: %f): %f' %(self.inp.id[i][j],i+1,self.inp.h[i][j],self.inp.k[i][j],self.inp.l[i][j],self.inp.fit['limit'][1],value*self.inp.nrefl[i]/g[i]))
                            reject.reject(self.inp,i,j,value*self.inp.nrefl[i]/g[i])
                        
        for i in range(self.inp.no_grains):
            if self.inp.nrefl[i] < self.inp.fit['min_refl'] and i+1 not in self.inp.fit['skip']:
                self.inp.fit['skip'].append(i+1)
        self.inp.fit['skip'].sort()
Exemple #2
0
def residual(inp,limit,only=None):
        """
        Reject outliers peaks based on residuals until mean<limit*median    
        
        Jette Oddershede, Risoe DTU, May 15 2008
        """
        
        # must update inp.vars because the order here is [i][j] in stead of [id[i][j]], the latter doesn't change when peaks are rejected, the former does.
        # calculate experimental errors using the present values 
        import error
        error.vars(inp)
        # build functions to minimise
        import build_fcn
        build_fcn.FCN(inp)
        #refinement update
        import fcn
        reload(fcn)
        for i in range(inp.no_grains):
            if i+1 in inp.fit['skip']:
                pass
            else:               
                for j in range(inp.nrefl[i]): 
                    inp.residual[i][j] = fcn.peak(inp.values['a'],inp.values['b'],inp.values['c'],inp.values['alpha'],inp.values['beta'],inp.values['gamma'],
                                              inp.h[i][j],inp.k[i][j],inp.l[i][j],
                                              inp.w[inp.id[i][j]],inp.dety[inp.id[i][j]],inp.detz[inp.id[i][j]],
                                              #n.array([inp.Syy[inp.id[i][j]],inp.Szz[inp.id[i][j]],inp.Sww[inp.id[i][j]]]),
                                              inp.vars[i][j], 
                                              inp.values['wx'],inp.values['wy'],
                                              inp.values['tx'],inp.values['ty'],inp.values['tz'],
                                              inp.values['py'],inp.values['pz'],
                                              inp.values['cy'],inp.values['cz'],
                                              inp.values['L'],
                                              inp.values['x%s' %i],inp.values['y%s' %i],inp.values['z%s' %i], 
                                              inp.rod[i][0]+inp.values['rodx%s' %i],
                                              inp.rod[i][1]+inp.values['rody%s' %i],
                                              inp.rod[i][2]+inp.values['rodz%s' %i],
                                              inp.values['epsaa%s' %i],inp.values['epsab%s' %i],inp.values['epsac%s' %i], 
                                              inp.values['epsbb%s' %i],inp.values['epsbc%s' %i],inp.values['epscc%s' %i]) 
                                                    
        data = deepcopy(inp.residual)
        maxres = [0]*inp.no_grains
        for i in range(inp.no_grains):
            data[i].sort()
            if i+1 in inp.fit['skip']:
                pass
            else:       
                mean = int(n.sum(data[i])/len(data[i]))
                medi = median(data[i])
#                print i, len(data[i]), medi, mean,'\n',data[i]
                while mean > limit*medi:
                    data[i].pop()
                    mean = int(n.sum(data[i])/inp.nrefl[i])
                    medi = median(data[i])
                maxres[i] = max(data[i])
#                print i, len(data[i]),medi,mean,'\n',data[i],'\n'
        
        delete = 0
        if only==None:
            only = range(1,1+inp.no_grains)        
        for i in range(inp.no_grains):
            if i+1 in inp.fit['skip'] or i+1 not in only:
                pass
            else:               
                for j in range(inp.nrefl[i]-1,-1,-1): # loop backwards to make pop work
                    if inp.residual[i][j] > maxres[i]:
                        delete = delete + 1
                        reject(inp,i,j,'residual')
        if only != []:
            print 'Rejected', delete, 'reflection based on residuals'
        insignificant(inp)
Exemple #3
0
def reject_outliers(lsqr):
#       """
#       Reject outliers peaks with a distance to the calculated peak position of
#       more than lsqr.inp.fit['rej_resmean'] times the mean distance for the given grain   
#       
#       Jette Oddershede, Risoe DTU, May 15 2008
#       """
        
        g = grain_values(lsqr)
        lsqr.inp.newreject = 0
        lsqr.inp.fit['newreject_grain'] = []
        for i in range(lsqr.inp.no_grains):
            if i+1 in lsqr.inp.fit['skip']:
                pass
            else:
                if lsqr.g_old[i]/g[i] > 1.1: # ensure fitting twice, grain and first final to get sufficient error estimation in iminuit where scale_errors not possible
                    lsqr.inp.fit['newreject_grain'].append(i+1)
        #value = []
        new = 1
        while new == 1:
            new = 0
            for i in range(lsqr.inp.no_grains):
                #value.append([])
                if i+1 in lsqr.inp.fit['skip']:
                    pass
                else:       
                    for j in range(lsqr.inp.nrefl[i]-1,-1,-1): # loop backwards to make pop work
                        value = fcn.peak(lsqr.m.values['a'],lsqr.m.values['b'],lsqr.m.values['c'],lsqr.m.values['alpha'],lsqr.m.values['beta'],lsqr.m.values['gamma'],
                                        lsqr.inp.h[i][j],lsqr.inp.k[i][j],lsqr.inp.l[i][j],
                                        lsqr.inp.w[lsqr.inp.id[i][j]],lsqr.inp.dety[lsqr.inp.id[i][j]],lsqr.inp.detz[lsqr.inp.id[i][j]],
                                        lsqr.inp.vars[i][j], 
                                        lsqr.m.values['wx'],lsqr.m.values['wy'],
                                        lsqr.m.values['tx'],lsqr.m.values['ty'],lsqr.m.values['tz'],
                                        lsqr.m.values['py'],lsqr.m.values['pz'],
                                        lsqr.m.values['cy'],lsqr.m.values['cz'],
                                        lsqr.m.values['L'],
                                        lsqr.m.values['x%s' %i],lsqr.m.values['y%s' %i],lsqr.m.values['z%s' %i], 
                                        lsqr.inp.rod[i][0]+lsqr.m.values['rodx%s' %i],
                                        lsqr.inp.rod[i][1]+lsqr.m.values['rody%s' %i],
                                        lsqr.inp.rod[i][2]+lsqr.m.values['rodz%s' %i],
                                        lsqr.m.values['epsaa%s' %i],lsqr.m.values['epsab%s' %i],lsqr.m.values['epsac%s' %i], 
                                        lsqr.m.values['epsbb%s' %i],lsqr.m.values['epsbc%s' %i],lsqr.m.values['epscc%s' %i]) 
                        if value > lsqr.inp.fit['rej_resmean']*g[i]/lsqr.inp.nrefl[i]:
                            new = 1
                            print 'Rejected peak id %i from grain %i (hkl: %i %i %i, limit: %f): %f' %(lsqr.inp.id[i][j],i+1,lsqr.inp.h[i][j],lsqr.inp.k[i][j],lsqr.inp.l[i][j],lsqr.inp.fit['rej_resmean'],value*lsqr.inp.nrefl[i]/g[i])
                            reject.reject(lsqr.inp,i,j,value*lsqr.inp.nrefl[i]/g[i])
                        
        if 'globals' not in lsqr.inp.fit['goon']:
            lsqr.inp.mean_ia = []
            for i in range(lsqr.inp.no_grains):
                lsqr.inp.mean_ia.append([])
                for j in range(lsqr.inp.nrefl[i]):
                    lsqr.inp.mean_ia[i].append(1)
            reject.mean_ia(lsqr.inp,lsqr.inp.fit['rej_ia'])

            lsqr.inp.residual = []
            for i in range(lsqr.inp.no_grains):
                lsqr.inp.residual.append([])
                for j in range(lsqr.inp.nrefl[i]):
                    lsqr.inp.residual[i].append(1)
            reject.residual(lsqr.inp,lsqr.inp.fit['rej_resmedian'])

            lsqr.inp.volume = []
            for i in range(lsqr.inp.no_grains):
                lsqr.inp.volume.append([])
                for j in range(lsqr.inp.nrefl[i]):
                    lsqr.inp.volume[i].append(1)
            reject.intensity(lsqr.inp)

            reject.merge(lsqr.inp)
            reject.multi(lsqr.inp)
        
                        
        for i in range(lsqr.inp.no_grains):
            if lsqr.inp.nrefl[i] < lsqr.inp.fit['min_refl'] and i+1 not in lsqr.inp.fit['skip']:
                lsqr.inp.fit['skip'].append(i+1)
        lsqr.inp.fit['skip'].sort()
Exemple #4
0
def grain_values(lsqr):
#       """
#       Calculate the contributions from each grain
#       For extreme contributions print a warning (*****)
#
#       Jette Oddershede, Risoe DTU, May 15 2008
#       """
        
        # rebuild function and load
        import build_fcn
        build_fcn.FCN(lsqr.inp)
        import fcn
        reload(fcn)
        # save values before making a new lsqr of minuit
#        temp1 = deepcopy(lsqr.m.values)        
#        temp2 = deepcopy(lsqr.m.errors)        
#        temp3 = deepcopy(lsqr.m.fixed)
#        temp4 = deepcopy(lsqr.mg.tol)
        g = n.zeros((lsqr.inp.no_grains))
        lsqr.inp.fit['poor'] = []
        lsqr.poor_value = []
        lsqr.poor_nrefl = []
        for i in range(lsqr.inp.no_grains):
            if i+1 in lsqr.inp.fit['skip']:
                pass
            else:       
                for j in range(lsqr.inp.nrefl[i]):
                    g[i] = g[i] + fcn.peak(lsqr.m.values['a'],lsqr.m.values['b'],lsqr.m.values['c'],lsqr.m.values['alpha'],lsqr.m.values['beta'],lsqr.m.values['gamma'],
                                     lsqr.inp.h[i][j],lsqr.inp.k[i][j],lsqr.inp.l[i][j],
                                     lsqr.inp.w[lsqr.inp.id[i][j]],lsqr.inp.dety[lsqr.inp.id[i][j]],lsqr.inp.detz[lsqr.inp.id[i][j]],
                                     lsqr.inp.vars[i][j], 
                                     lsqr.m.values['wx'],lsqr.m.values['wy'],
                                     lsqr.m.values['tx'],lsqr.m.values['ty'],lsqr.m.values['tz'],
                                     lsqr.m.values['py'],lsqr.m.values['pz'],
                                     lsqr.m.values['cy'],lsqr.m.values['cz'],
                                     lsqr.m.values['L'],
                                     lsqr.m.values['x%s' %i],lsqr.m.values['y%s' %i],lsqr.m.values['z%s' %i], 
                                     lsqr.inp.rod[i][0]+lsqr.m.values['rodx%s' %i],
                                     lsqr.inp.rod[i][1]+lsqr.m.values['rody%s' %i],
                                     lsqr.inp.rod[i][2]+lsqr.m.values['rodz%s' %i],
                                     lsqr.m.values['epsaa%s' %i],lsqr.m.values['epsab%s' %i],lsqr.m.values['epsac%s' %i], 
                                     lsqr.m.values['epsbb%s' %i],lsqr.m.values['epsbc%s' %i],lsqr.m.values['epscc%s' %i]) 
#        for i in range(lsqr.inp.no_grains):
#            if i+1 not in lsqr.inp.fit['skip']:
#                # make new lsqr of minuit        
#                lsqr.mg = Minuit(fcn.FCNgrain)
#                lsqr.mg.values = temp1
#                lsqr.mg.values['i'] = i
#                lsqr.mg.scan(("L",1,lsqr.mg.values['L']-1,lsqr.mg.values['L']+1)) # scan to set lsqr.m.fval, function starting value
#                g[i] = lsqr.mg.fval
        data = []
        poor = []
        for i in range(lsqr.inp.no_grains):
            if i+1 not in lsqr.inp.fit['skip']:
                data.append(g[i]/lsqr.inp.nrefl[i])
        reject.mad(data,poor,lsqr.inp.fit['rej_vol']**2)
        for i in range(lsqr.inp.no_grains):
            if i+1 not in lsqr.inp.fit['skip']:                
                print 'Grain %i %i: %e %f' %(i+1,lsqr.inp.nrefl[i],g[i],g[i]/lsqr.inp.nrefl[i])
        # give back old values  
#        lsqr.m.errors = temp2      
#        lsqr.m.fixed = temp3       
#        lsqr.mg.tol = temp4
            
        return g
Exemple #5
0
def reject_outliers(lsqr):
#        """
#        Reject outliers peaks with a distance to the calculated peak position of
#        more than lsqr.inp.fit['rej_resmean'] times the mean distance for the given grain   
#        
#        Jette Oddershede, Risoe DTU, May 15 2008
#        """
        
        g = grain_values(lsqr)
        lsqr.inp.newreject = 0
        lsqr.inp.fit['newreject_grain'] = []
        #value = []
        new = 1
        no_ref = []
        while new == 1:
            new = 0
            for i in range(lsqr.inp.no_grains):
                #value.append([])
                no_ref.append(0)
                for k in range(lsqr.inp.fit['no_det']):
                    no_ref[i] = no_ref[i] + lsqr.inp.nrefl[k][i]
                if i+1 in lsqr.inp.fit['skip']:
                    pass
                else:       
                    for k in range(lsqr.inp.fit['no_det']):                
                        for j in range(lsqr.inp.nrefl[k][i]-1,-1,-1): # loop backwards to make pop work
                            value = fcn.peak(lsqr.m.values['a'],lsqr.m.values['b'],lsqr.m.values['c'],lsqr.m.values['alpha'],lsqr.m.values['beta'],lsqr.m.values['gamma'],
                                        lsqr.inp.h[k][i][j],lsqr.inp.k[k][i][j],lsqr.inp.l[k][i][j],
                                        lsqr.inp.w[k][lsqr.inp.id[k][i][j]],lsqr.inp.dety[k][lsqr.inp.id[k][i][j]],lsqr.inp.detz[k][lsqr.inp.id[k][i][j]],
                                        lsqr.inp.vars[k][i][j], 
                                        lsqr.m.values['wx'],lsqr.m.values['wy'],
                                        lsqr.m.values['tx%s' %k],lsqr.m.values['ty%s' %k],lsqr.m.values['tz%s' %k],
                                        lsqr.m.values['py%s' %k],lsqr.m.values['pz%s' %k],
                                        lsqr.m.values['cy%s' %k],lsqr.m.values['cz%s' %k],
                                        lsqr.m.values['L%s' %k],
                                        lsqr.m.values['x%s' %i],lsqr.m.values['y%s' %i],lsqr.m.values['z%s' %i], 
                                        lsqr.inp.rod[i][0]+lsqr.m.values['rodx%s' %i],
                                        lsqr.inp.rod[i][1]+lsqr.m.values['rody%s' %i],
                                        lsqr.inp.rod[i][2]+lsqr.m.values['rodz%s' %i],
                                        lsqr.m.values['epsaa%s' %i],lsqr.m.values['epsab%s' %i],lsqr.m.values['epsac%s' %i], 
                                        lsqr.m.values['epsbb%s' %i],lsqr.m.values['epsbc%s' %i],lsqr.m.values['epscc%s' %i]) 
                            if value > lsqr.inp.fit['rej_resmean']*g[i]/no_ref[i]:
                                new = 0 # only one cycle of rejection, not until no more as for one detector fitting!!!
                                print 'Rej peak id %i of det %i grain %i (hkl: %i %i %i, limit: %0.1f): %0.1f' %(lsqr.inp.id[k][i][j],k,i+1,lsqr.inp.h[k][i][j],lsqr.inp.k[k][i][j],lsqr.inp.l[k][i][j],lsqr.inp.fit['rej_resmean'],value*no_ref[i]/g[i])
                                reject_multidet.reject(lsqr.inp,i,j,k,value*no_ref[i]/g[i])

                                
        if 'globals' not in lsqr.inp.fit['goon']:
            lsqr.inp.mean_ia = []
            for i in range(lsqr.inp.no_grains):
                lsqr.inp.mean_ia.append([])
                for m in range(lsqr.inp.fit['no_det']):
                    for j in range(lsqr.inp.nrefl[m][i]):
                        lsqr.inp.mean_ia[i].append(1)
            reject_multidet.mean_ia(lsqr.inp,lsqr.inp.fit['rej_ia'])

            lsqr.inp.residual = []
            for i in range(lsqr.inp.no_grains):
                lsqr.inp.residual.append([])
                for m in range(lsqr.inp.fit['no_det']):
                    for j in range(lsqr.inp.nrefl[m][i]):
                        lsqr.inp.residual[i].append(1)
            reject_multidet.residual(lsqr.inp,lsqr.inp.fit['rej_resmedian'])

            # lsqr.inp.volume = []
            # for i in range(lsqr.inp.no_grains):
                # lsqr.inp.volume.append([])
                # for j in range(lsqr.inp.nrefl[i]):
                    # lsqr.inp.volume[i].append(1)
            # reject.intensity(lsqr.inp)

            # reject.merge(lsqr.inp)
            # reject.multi(lsqr.inp)
        
                        
        for i in range(lsqr.inp.no_grains):
            if no_ref[i] < lsqr.inp.fit['min_refl'] and i+1 not in lsqr.inp.fit['skip']:
                lsqr.inp.fit['skip'].append(i+1)
        lsqr.inp.fit['skip'].sort()