def regression_warp(nu, q, y, alpha):
    """
    calculates optimal warping for function linear regression

    :param nu: numpy ndarray of srvf (M,N) of M functions with N samples
    :param q: numpy ndarray of srvf (M,N) of M functions with N samples
    :param y: numpy ndarray of shape (1,N) of M functions with N samples
    responses
    :param alpha: numpy scalar

    :rtype: numpy array
    :return gamma_new: warping function

    """
    T = q.shape[1]

    qM, O_M, gam_M = cf.find_rotation_and_seed_q(nu, q, rotation=False)
    y_M = cf.innerprod_q2(qM, nu)

    qm, O_m, gam_m = cf.find_rotation_and_seed_q(-1 * nu, q, rotation=False)
    y_m = cf.innerprod_q2(qm, nu)

    if y > alpha + y_M:
        O_hat = O_M
        gamma_new = gam_M
    elif y < alpha + y_m:
        O_hat = O_m
        gamma_new = gam_m
    else:
        gamma_new, O_hat = cf.curve_zero_crossing(y - alpha, q, nu, y_M, y_m,
                                                  gam_M, gam_m)

    return (gamma_new, O_hat)
Exemple #2
0
def karcher_calc(mu, q, basis, closed, rotation, method):
    # Compute shooting vector from mu to q_i
    qn_t, R, gamI = cf.find_rotation_and_seed_unique(mu, q, closed, rotation,
                                                     method)
    qn_t = qn_t / sqrt(cf.innerprod_q2(qn_t, qn_t))

    q1dotq2 = cf.innerprod_q2(mu, qn_t)

    if (q1dotq2 > 1):
        q1dotq2 = 1

    d = arccos(q1dotq2)

    u = qn_t - q1dotq2 * mu
    normu = sqrt(cf.innerprod_q2(u, u))
    if (normu > 1e-4):
        w = u * arccos(q1dotq2) / normu
    else:
        w = zeros(qn_t.shape)

    # Project to tangent space of manifold to obtain v_i
    if closed == 0:
        v = w
    else:
        v = cf.project_tangent(w, q, basis)

    return (v, gamI, d)
Exemple #3
0
def calculate_gradE(u, utilde, T=100, k=5):
    """
    calculates gradient of energy along path

    :param u: numpy ndarray of shape (2,M) of M samples
    :param utilde: numpy ndarray of shape (2,M) of M samples
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy scalar
    :return gradE: gradient of energy
    :return normgradE: norm of gradient of energy

    """
    gradE = zeros((2, T, k))
    normgradE = zeros(k)

    for tau in range(2, k + 1):
        gradE[:, :,
              tau - 1] = u[:, :, tau - 1] - ((tau - 1.) /
                                             (k - 1.)) * utilde[:, :, tau - 1]
        normgradE[tau - 1] = sqrt(
            cf.innerprod_q2(gradE[:, :, tau - 1], gradE[:, :, tau - 1]))

    return (gradE, normgradE)
Exemple #4
0
def sample_shapes(mu, K, mode='O', no=3, numSamp=10):
    """
    Computes sample shapes from mean and covariance

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param numSamp: number of samples (default 10)

    :rtype: tuple of numpy array
    :return samples: sample shapes

    """
    n, T = mu.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    if mode == 0:
        N = 2
    else:
        N = 10

    epsilon = 1./(N-1)

    samples = empty(numSamp, dtype=object)
    for i in range(0, numSamp):
        v = zeros((2, T))
        for m in range(0, no):
            v = v + randn()*sqrt(s[m])*vstack((U[0:T, m], U[T:2*T, m]))

        q1 = mu
        for j in range(0, N-1):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        samples[i] = cf.q_to_curve(q2)

    return(samples)
def sample_shapes(mu, K, mode='O', no=3, numSamp=10):
    """
    Computes sample shapes from mean and covariance

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param numSamp: number of samples (default 10)

    :rtype: tuple of numpy array
    :return samples: sample shapes

    """
    n, T = mu.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    if mode == 0:
        N = 2
    else:
        N = 10

    epsilon = 1./(N-1)

    samples = empty(numSamp, dtype=object)
    for i in range(0, numSamp):
        v = zeros((2, T))
        for m in range(0, no):
            v = v + randn()*sqrt(s[m])*vstack((U[0:T, m], U[T:2*T, m]))

        q1 = mu
        for j in range(0, N-1):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        samples[i] = cf.q_to_curve(q2)

    return(samples)
def regression_warp(nu, beta, y, alpha):
    """
    calculates optimal warping for function linear regression

    :param nu: numpy ndarray of shape (M,N) of M functions with N samples
    :param beta: numpy ndarray of shape (M,N) of M functions with N samples
    :param y: numpy ndarray of shape (1,N) of M functions with N samples
    responses
    :param alpha: numpy scalar

    :rtype: numpy array
    :return gamma_new: warping function

    """
    T = beta.shape[1]
    betanu = cf.q_to_curve(nu)

    betaM, O_M, tauM = cf.find_rotation_and_seed_coord(betanu, beta)
    q = cf.curve_to_q(betaM)
    gam_M = cf.optimum_reparam_curve(nu, q)
    betaM = cf.group_action_by_gamma_coord(betaM, gam_M)
    qM = cf.curve_to_q(betaM)
    y_M = cf.innerprod_q2(qM, nu)

    betam, O_m, taum = cf.find_rotation_and_seed_coord(-1 * betanu, beta)
    q = cf.curve_to_q(betam)
    gam_m = cf.optimum_reparam_curve(-1 * nu, q)
    betam = cf.group_action_by_gamma_coord(betam, gam_m)
    qm = cf.curve_to_q(betam)
    y_m = cf.innerprod_q2(qm, nu)

    if y > alpha + y_M:
        O_hat = O_M
        gamma_new = gam_M
        tau = tauM
    elif y < alpha + y_m:
        O_hat = O_m
        gamma_new = gam_m
        tau = taum
    else:
        gamma_new, O_hat, tau = cf.curve_zero_crossing(y - alpha, beta, nu, y_M, y_m, gam_M,
                                                               gam_m)

    return(gamma_new, O_hat, tau)
Exemple #7
0
    def sample_shapes(self, no=3, numSamp=10):
        """
        Computes sample shapes from mean and covariance

        :param no: number of direction (default 3)
        :param numSamp: number of samples (default 10)
        """
        n, T = self.q_mean.shape
        modes = ['O', 'C']
        mode = [i for i, x in enumerate(modes) if x == self.mode]
        if len(mode) == 0:
            mode = 0
        else:
            mode = mode[0]

        U, s, V = svd(self.C)

        if mode == 0:
            N = 2
        else:
            N = 10

        epsilon = 1. / (N - 1)

        samples = empty(numSamp, dtype=object)
        for i in range(0, numSamp):
            v = zeros((2, T))
            for m in range(0, no):
                v = v + randn() * sqrt(s[m]) * vstack(
                    (U[0:T, m], U[T:2 * T, m]))

            q1 = self.q_mean
            for j in range(0, N - 1):
                normv = sqrt(cf.innerprod_q2(v, v))

                if normv < 1e-4:
                    q2 = self.q_mean
                else:
                    q2 = cos(epsilon * normv) * q1 + sin(
                        epsilon * normv) * v / normv
                    if mode == 1:
                        q2 = cf.project_curve(q2)

                # Parallel translate tangent vector
                basis2 = cf.find_basis_normal(q2)
                v = cf.parallel_translate(v, q1, q2, basis2, mode)

                q1 = q2

            samples[i] = cf.q_to_curve(q2)

        self.samples = samples
        return
Exemple #8
0
def geod_dist_path_strt(beta, k=5):
    """
    calculate geodisc distance for path straightening

    :param beta: numpy ndarray of shape (2,M) of M samples
    :param k: number of samples along path (Default = 5)

    :rtype: numpy scalar
    :return dist: geodesic distance

    """
    dist = 0

    for i in range(1, k):
        beta1 = beta[:, :, i - 1]
        beta2 = beta[:, :, i]
        q1 = cf.curve_to_q(beta1)
        q2 = cf.curve_to_q(beta2)
        d = arccos(cf.innerprod_q2(q1, q2))
        dist += d

    return dist
Exemple #9
0
def calculate_gradE(u, utilde, T=100, k=5):
    """
    calculates gradient of energy along path

    :param u: numpy ndarray of shape (2,M) of M samples
    :param utilde: numpy ndarray of shape (2,M) of M samples
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy scalar
    :return gradE: gradient of energy
    :return normgradE: norm of gradient of energy

    """
    gradE = zeros((2, T, k))
    normgradE = zeros(k)

    for tau in range(2, k + 1):
        gradE[:, :, tau - 1] = u[:, :, tau - 1] - ((tau - 1.0) / (k - 1.0)) * utilde[:, :, tau - 1]
        normgradE[tau - 1] = sqrt(cf.innerprod_q2(gradE[:, :, tau - 1], gradE[:, :, tau - 1]))

    return (gradE, normgradE)
Exemple #10
0
def geod_dist_path_strt(beta, k=5):
    """
    calculate geodisc distance for path straightening

    :param beta: numpy ndarray of shape (2,M) of M samples
    :param k: number of samples along path (Default = 5)

    :rtype: numpy scalar
    :return dist: geodesic distance

    """
    dist = 0

    for i in range(1, k):
        beta1 = beta[:, :, i-1]
        beta2 = beta[:, :, i]
        q1 = cf.curve_to_q(beta1)
        q2 = cf.curve_to_q(beta2)
        d = arccos(cf.innerprod_q2(q1, q2))
        dist += d

    return(dist)
def oc_elastic_prediction(beta, model, y=None):
    """
    This function identifies a regression model with phase-variablity
    using elastic methods

    :param beta: numpy ndarray of shape (M,N) of M functions with N samples
    :param model: identified model from elastic_regression
    :param y: truth, optional used to calculate SSE

    :rtype: tuple of numpy array
    :return alpha: alpha parameter of model
    :return beta: beta(t) of model
    :return fn: aligned functions - numpy ndarray of shape (M,N) of M
    functions with N samples
    :return qn: aligned srvfs - similar structure to fn
    :return gamma: calculated warping functions
    :return q: original training SRSFs
    :return B: basis matrix
    :return b: basis coefficients
    :return SSE: sum of squared error

    """
    T = model.q.shape[1]
    n = beta.shape[2]
    N = model.q.shape[2]

    q, beta = preproc_open_curve(beta, T)

    if model.type == 'oclinear' or model.type == 'oclogistic':
        y_pred = np.zeros(n)
    elif model.type == 'ocmlogistic':
        m = model.n_classes
        y_pred = np.zeros((n, m))

    for ii in range(0, n):
        diff = model.q - q[:, :, ii][:, :, np.newaxis]
        # dist = np.linalg.norm(np.abs(diff), axis=(0, 1)) ** 2
        dist = np.zeros(N)
        for jj in range(0, N):
            dist[jj] = np.linalg.norm(np.abs(diff[:, :, jj])) ** 2
        if model.type == 'oclinear' or model.type == 'oclogistic':
            # beta1 = cf.shift_f(beta[:, :, ii], int(model.tau[dist.argmin()]))
            beta1 = beta[:, :, ii]
        else:
            beta1 = beta[:, :, ii]
        beta1 = model.O[:, :, dist.argmin()].dot(beta1)
        beta1 = cf.group_action_by_gamma_coord(beta1,
                                               model.gamma[:, dist.argmin()])
        q_tmp = cf.curve_to_q(beta1)

        if model.type == 'oclinear':
            y_pred[ii] = model.alpha + cf.innerprod_q2(q_tmp, model.nu)
        elif model.type == 'oclogistic':
            y_pred[ii] = model.alpha + cf.innerprod_q2(q_tmp, model.nu)
        elif model.type == 'ocmlogistic':
            for jj in range(0, m):
                y_pred[ii, jj] = model.alpha[jj] + cf.innerprod_q2(q_tmp, model.nu[:, :, jj])

    if y is None:
        if model.type == 'oclinear':
            SSE = None
        elif model.type == 'oclogistic':
            y_pred = phi(y_pred)
            y_labels = np.ones(n)
            y_labels[y_pred < 0.5] = -1
            PC = None
        elif model.type == 'ocmlogistic':
            y_pred = phi(y_pred.ravel())
            y_pred = y_pred.reshape(n, m)
            y_labels = y_pred.argmax(axis=1) + 1
            PC = None
    else:
        if model.type == 'oclinear':
            SSE = sum((y - y_pred) ** 2)
        elif model.type == 'oclogistic':
            y_pred = phi(y_pred)
            y_labels = np.ones(n)
            y_labels[y_pred < 0.5] = -1
            TP = sum(y[y_labels == 1] == 1)
            FP = sum(y[y_labels == -1] == 1)
            TN = sum(y[y_labels == -1] == -1)
            FN = sum(y[y_labels == 1] == -1)
            PC = (TP + TN) / float(TP + FP + FN + TN)
        elif model.type == 'ocmlogistic':
            y_pred = phi(y_pred.ravel())
            y_pred = y_pred.reshape(n, m)
            y_labels = y_pred.argmax(axis=1) + 1
            PC = np.zeros(m)
            cls_set = np.arange(1, m + 1)
            for ii in range(0, m):
                cls_sub = np.delete(cls_set, ii)
                TP = sum(y[y_labels == (ii + 1)] == (ii + 1))
                FP = sum(y[np.in1d(y_labels, cls_sub)] == (ii + 1))
                TN = sum(y[np.in1d(y_labels, cls_sub)] ==
                         y_labels[np.in1d(y_labels, cls_sub)])
                FN = sum(np.in1d(y[y_labels == (ii + 1)], cls_sub))
                PC[ii] = (TP + TN) / float(TP + FP + FN + TN)

            PC = sum(y == y_labels) / float(y_labels.size)

    if model.type == 'oclinear':
        prediction = collections.namedtuple('prediction', ['y_pred', 'SSE'])
        out = prediction(y_pred, SSE)
    elif model.type == 'oclogistic':
        prediction = collections.namedtuple('prediction', ['y_prob',
                                                           'y_labels', 'PC'])
        out = prediction(y_pred, y_labels, PC)
    elif model.type == 'ocmlogistic':
        prediction = collections.namedtuple('prediction', ['y_prob',
                                                           'y_labels', 'PC'])
        out = prediction(y_pred, y_labels, PC)

    return out
Exemple #12
0
    def karcher_mean(self, parallel=False, cores=-1):
        """
        This calculates the mean of a set of curves
        :param parallel: run in parallel (default = F)
        :param cores: number of cores for parallel (default = -1 (all))
        """
        n, T, N = self.beta.shape

        modes = ['O', 'C']
        mode = [i for i, x in enumerate(modes) if x == self.mode]
        if len(mode) == 0:
            mode = 0
        else:
            mode = mode[0]

        # Initialize mu as one of the shapes
        mu = self.q[:, :, 0]
        betamean = self.beta[:, :, 0]
        itr = 0

        gamma = zeros((T, N))
        maxit = 20

        sumd = zeros(maxit + 1)
        v = zeros((n, T, N))
        normvbar = zeros(maxit + 1)

        delta = 0.5
        tolv = 1e-4
        told = 5 * 1e-3

        print("Computing Karcher Mean of %d curves in SRVF space.." % N)
        while itr < maxit:
            print("updating step: %d" % (itr + 1))

            if iter == maxit:
                print("maximal number of iterations reached")

            mu = mu / sqrt(cf.innerprod_q2(mu, mu))
            if mode == 1:
                self.basis = cf.find_basis_normal(mu)
            else:
                self.basis = []

            sumv = zeros((n, T))
            sumd[0] = inf
            sumd[itr + 1] = 0
            out = Parallel(n_jobs=cores)(delayed(karcher_calc)(
                self.beta[:, :, n], self.q[:, :,
                                           n], betamean, mu, self.basis, mode)
                                         for n in range(N))
            v = zeros((n, T, N))
            for i in range(0, N):
                v[:, :, i] = out[i][0]
                sumd[itr + 1] = sumd[itr + 1] + out[i][1]**2

            sumv = v.sum(axis=2)

            # Compute average direction of tangent vectors v_i
            vbar = sumv / float(N)

            normvbar[itr] = sqrt(cf.innerprod_q2(vbar, vbar))
            normv = normvbar[itr]

            if normv > tolv and fabs(sumd[itr + 1] - sumd[itr]) > told:
                # Update mu in direction of vbar
                mu = cos(delta * normvbar[itr]) * mu + sin(
                    delta * normvbar[itr]) * vbar / normvbar[itr]

                if mode == 1:
                    mu = cf.project_curve(mu)

                x = cf.q_to_curve(mu)
                a = -1 * cf.calculatecentroid(x)
                betamean = x + tile(a, [T, 1]).T
            else:
                break

            itr += 1

        self.q_mean = mu
        self.beta_mean = betamean
        self.v = v
        self.qun = sumd[0:(itr + 1)]
        self.E = normvbar[0:(itr + 1)]

        return
def oc_elastic_regression(beta, y, B=None, df=40, T=200, max_itr=20, cores=-1):
    """
    This function identifies a regression model for open curves
    using elastic methods

    :param beta: numpy ndarray of shape (n, M, N) describing N curves
    in R^M
    :param y: numpy array of N responses
    :param B: optional matrix describing Basis elements
    :param df: number of degrees of freedom B-spline (default 20)
    :param T: number of desired samples along curve (default 100)
    :param max_itr: maximum number of iterations (default 20)
    :param cores: number of cores for parallel processing (default all)
    :type beta: np.ndarray

    :rtype: tuple of numpy array
    :return alpha: alpha parameter of model
    :return beta: beta(t) of model
    :return fn: aligned functions - numpy ndarray of shape (M,N) of M
    functions with N samples
    :return qn: aligned srvfs - similar structure to fn
    :return gamma: calculated warping functions
    :return q: original training SRSFs
    :return B: basis matrix
    :return b: basis coefficients
    :return SSE: sum of squared error

    """
    n = beta.shape[0]
    N = beta.shape[2]
    time = np.linspace(0, 1, T)

    if n > 500:
        parallel = True
    elif T > 100:
        parallel = True
    else:
        parallel = False

    # Create B-Spline Basis if none provided
    if B is None:
        B = bs(time, df=df, degree=4, include_intercept=True)
    Nb = B.shape[1]

    q, beta = preproc_open_curve(beta, T)
    beta0 = beta.copy()
    qn = q.copy()

    gamma = np.tile(np.linspace(0, 1, T), (N, 1))
    gamma = gamma.transpose()
    O_hat = np.tile(np.eye(n), (N, 1, 1)).T

    itr = 1
    SSE = np.zeros(max_itr)
    while itr <= max_itr:
        print("Iteration: %d" % itr)
        # align data

        # OLS using basis
        Phi = np.ones((N, n * Nb + 1))
        for ii in range(0, N):
            for jj in range(0, n):
                for kk in range(1, Nb + 1):
                    Phi[ii, jj * Nb + kk] = trapz(qn[jj, :, ii] * B[:, kk - 1], time)

        xx = dot(Phi.T, Phi)
        inv_xx = inv(xx)
        xy = dot(Phi.T, y)
        b = dot(inv_xx, xy)

        alpha = b[0]
        nu = np.zeros((n, T))
        for ii in range(0, n):
            nu[ii, :] = B.dot(b[(ii * Nb + 1):((ii + 1) * Nb + 1)])

        # compute the SSE
        int_X = np.zeros(N)
        for ii in range(0, N):
            int_X[ii] = cf.innerprod_q2(qn[:, :, ii], nu)

        SSE[itr - 1] = sum((y.reshape(N) - alpha - int_X) ** 2)

        # find gamma
        gamma_new = np.zeros((T, N))
        if parallel:
            out = Parallel(n_jobs=cores)(delayed(regression_warp)(nu, beta0[:, :, n], y[n], alpha) for n in range(N))
            for ii in range(0, N):
                gamma_new[:, ii] = out[ii][0]
                beta1n = cf.group_action_by_gamma_coord(out[ii][1].dot(beta0[:, :, ii]), out[ii][0])
                beta[:, :, ii] = beta1n
                O_hat[:, :, ii] = out[ii][1]
                qn[:, :, ii] = cf.curve_to_q(beta[:, :, ii])
        else:
            for ii in range(0, N):
                beta1 = beta0[:, :, ii]
                gammatmp, Otmp, tau = regression_warp(nu, beta1, y[ii], alpha)
                gamma_new[:, ii] = gammatmp
                beta1n = cf.group_action_by_gamma_coord(Otmp.dot(beta0[:, :, ii]), gammatmp)
                beta[:, :, ii] = beta1n
                O_hat[:, :, ii] = Otmp
                qn[:, :, ii] = cf.curve_to_q(beta[:, :, ii])


        if np.abs(SSE[itr - 1] - SSE[itr - 2]) < 1e-15:
            break
        else:
            gamma = gamma_new

        itr += 1

    tau = np.zeros(N)

    model = collections.namedtuple('model', ['alpha', 'nu', 'betan' 'q', 'gamma',
                                             'O', 'tau', 'B', 'b', 'SSE', 'type'])
    out = model(alpha, nu, beta, q, gamma, O_hat, tau, B, b[1:-1], SSE[0:itr], 'oclinear')
    return out
Exemple #14
0
def curve_principal_directions(betamean, mu, K, mode='O', no=3, N=5):
    """
    Computes principal direction of variation specified by no. N is
    Number of shapes away from mean. Creates 2*N+1 shape sequence

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param N: number of shapes (2*N+1) (default 5)

    :rtype: tuple of numpy array
    :return pd: principal directions

    """
    n, T = betamean.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    qarray = empty((no, 2*N+1), dtype=object)
    qarray1 = empty(N, dtype=object)
    qarray2 = empty(N, dtype=object)
    pd = empty((no, 2*N+1), dtype=object)
    pd1 = empty(N, dtype=object)
    pd2 = empty(N, dtype=object)
    for m in range(0, no):
        princDir = vstack((U[0:T, m], U[T:2*T, m]))
        v = sqrt(s[m]) * princDir
        q1 = mu
        epsilon = 2./N

        # Forward direction from mean
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1 + sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray1[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd1[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        # Backward direction from mean
        v = -sqrt(s[m])*princDir
        q1 = mu
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray2[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd2[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        for i in range(0, N):
            qarray[m, i] = qarray2[(N-1)-i]
            pd[m, i] = pd2[(N-1)-i]

        qarray[m, N] = mu
        centroid1 = -1*cf.calculatecentroid(betamean)
        beta_scaled, scale = cf.scale_curve(betamean +
                                            tile(centroid1, [T, 1]).T)
        pd[m, N] = beta_scaled

        for i in range(N+1, 2*N+1):
            qarray[m, i] = qarray1[i-(N+1)]
            pd[m, i] = pd1[i-(N+1)]

    return(pd)
    def predict(self, newdata=None):
        """
        This function performs prediction on regression model on new data if available or current stored data in object
        Usage:  obj.predict()
                obj.predict(newdata)

        :param newdata: dict containing new data for prediction (needs the keys below, if None predicts on training data)
        :type newdata: dict
        :param beta: (n, M,N) matrix of curves
        :param y: truth if available
        """

        T = self.warp_data.beta_mean.shape[1]
        if newdata != None:
            beta = newdata['beta']
            y = newdata['y']
            n = beta.shape[2]
            beta1 = np.zeros(beta.shape)
            q = np.zeros(beta.shape)
            for ii in range(0,n):
                if (beta.shape[1] != T):
                    beta1[:,:,ii] = cf.resamplecurve(beta[:,:,ii],T)
                else:
                    beta1[:,:,ii] = beta[:,:,ii]
                a = -cf.calculatecentroid(beta1[:,:,ii])
                beta1[:,:,ii] += np.tile(a, (T,1)).T
                q[:,:,ii] = cf.curve_to_q(beta1[:,:,ii])[0]
            
            mu = self.warp_data.q_mean

            v = np.zeros(q.shape)
            for ii in range(0,n):
                qn_t, R, gamI = cf.find_rotation_and_seed_unique(mu, q[:,:,ii], 0, self.rotation)
                qn_t = qn_t / np.sqrt(cf.innerprod_q2(qn_t,qn_t))

                q1dotq2 = cf.innerprod_q2(mu,qn_t)

                if (q1dotq2 > 1):
                    q1dotq2 = 1
                
                d = np.arccos(q1dotq2)

                u = qn_t - q1dotq2*mu
                normu = np.sqrt(cf.innerprod_q2(u,u))
                if (normu>1e-4):
                    v[:,:,ii] = u*np.arccos(q1dotq2)/normu
                else:
                    v[:,:,ii] = np.zeros(qn_t.shape)

            
            Utmp = self.warp_data.U.T
            no = self.warp_data.U.shape[1]
            VM = np.mean(self.warp_data.v,2)
            VM = VM.flatten()

            x = np.zeros((no,n))
            for i in range(0,n):
                tmp = v[:,:,i]
                tmpv1 = tmp.flatten()
                x[:,i] = Utmp.dot((tmpv1- VM))

            self.y_pred = np.zeros(n)
            for ii in range(0,n):
                self.y_pred[ii] = self.alpha + np.dot(x[:,ii],self.b)
            
            if y is None:
                self.SSE = np.nan
            else:
                self.SSE = np.sum((y-self.y_pred)**2)
        else:
            n = self.warp_data.coef.shape[1]
            self.y_pred = np.zeros(n)
            for ii in range(0,n):
                self.y_pred[ii] = self.alpha + np.dot(self.warp_data.coef[:,ii],self.b)
            
            self.SSE = np.sum((self.y-self.y_pred)**2)

        return
Exemple #16
0
def geod_sphere(beta1, beta2, k=5):
    """
    This function caluclates the geodecis between open curves beta1 and
    beta2 with k steps along path

    :param beta1: numpy ndarray of shape (2,M) of M samples
    :param beta2: numpy ndarray of shape (2,M) of M samples
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return dist: geodesic distance
    :return path: geodesic path
    :return O: rotation matrix

    """
    lam = 0.0
    elastic = 1
    rotation = 1
    returnpath = 1
    n, T = beta1.shape

    beta1 = cf.resamplecurve(beta1, T)
    beta2 = cf.resamplecurve(beta2, T)

    centroid1 = cf.calculatecentroid(beta1)
    beta1 = beta1 - tile(centroid1, [T, 1]).T
    centroid2 = cf.calculatecentroid(beta2)
    beta2 = beta2 - tile(centroid2, [T, 1]).T

    q1 = cf.curve_to_q(beta1)
    if rotation:
        beta2, O1, tau = cf.find_rotation_and_seed_coord(beta1, beta2)
        q2 = cf.curve_to_q(beta2)
    else:
        O1 = eye(2)
        q2 = cf.curve_to_q(beta2)

    if elastic:
        # Find the optimal coorespondence
        gam = cf.optimum_reparam_curve(q2, q1, lam)
        gamI = uf.invertGamma(gam)
        # Applying optimal re-parameterization to the second curve
        beta2n = cf.group_action_by_gamma_coord(beta2, gamI)
        q2n = cf.curve_to_q(beta2n)

        if rotation:
            beta2n, O2, tau = cf.find_rotation_and_seed_coord(beta1, beta2n)
            centroid2 = cf.calculatecentroid(beta2n)
            beta2n = beta2n - tile(centroid2, [T, 1]).T
            q2n = cf.curve_to_q(beta2n)
            O = O1.dot(O2)
    else:
        q2n = q2
        O = O1

    # Forming geodesic between the registered curves
    dist = arccos(cf.innerprod_q2(q1, q2n))

    if returnpath:
        PsiQ = zeros((n, T, k))
        PsiX = zeros((n, T, k))
        for tau in range(0, k):
            s = dist * tau / (k - 1.0)
            PsiQ[:, :, tau] = (sin(dist - s) * q1 + sin(s) * q2n) / sin(dist)
            PsiX[:, :, tau] = cf.q_to_curve(PsiQ[:, :, tau])

        path = PsiQ
    else:
        path = 0

    return (dist, path, O)
Exemple #17
0
def curve_karcher_mean(beta, mode='O'):
    """
    This claculates the mean of a set of curves
    :param beta: numpy ndarray of shape (n, M, N) describing N curves
    in R^M
    :param mode: Open ('O') or closed curve ('C') (default 'O')

    :rtype: tuple of numpy array
    :return mu: mean srvf
    :return betamean: mean curve
    :return v: shooting vectors
    :return q: srvfs

    """
    n, T, N = beta.shape
    q = zeros((n, T, N))
    for ii in range(0, N):
        q[:, :, ii] = cf.curve_to_q(beta[:, :, ii])

    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    # Initialize mu as one of the shapes
    mu = q[:, :, 0]
    betamean = beta[:, :, 0]

    delta = 0.5
    tolv = 1e-4
    told = 5*1e-3
    maxit = 20
    itr = 0
    sumd = zeros(maxit+1)
    v = zeros((n, T, N))
    normvbar = zeros(maxit+1)

    while itr < maxit:
        print("Iteration: %d" % itr)

        mu = mu / sqrt(cf.innerprod_q2(mu, mu))

        sumv = zeros((2, T))
        sumd[itr+1] = 0
        out = Parallel(n_jobs=-1)(delayed(karcher_calc)(beta[:, :, n],
                                  q[:, :, n], betamean, mu, mode) for n in range(N))
        v = zeros((n, T, N))
        for i in range(0, N):
            v[:, :, i] = out[i][0]
            sumd[itr+1] = sumd[itr+1] + out[i][1]**2

        sumv = v.sum(axis=2)

        # Compute average direction of tangent vectors v_i
        vbar = sumv/float(N)

        normvbar[itr] = sqrt(cf.innerprod_q2(vbar, vbar))
        normv = normvbar[itr]

        if normv > tolv and fabs(sumd[itr+1]-sumd[itr]) > told:
            # Update mu in direction of vbar
            mu = cos(delta*normvbar[itr])*mu + sin(delta*normvbar[itr]) * vbar/normvbar[itr]

            if mode == 1:
                mu = cf.project_curve(mu)

            x = cf.q_to_curve(mu)
            a = -1*cf.calculatecentroid(x)
            betamean = x + tile(a, [T, 1]).T
        else:
            break

        itr += 1

    return(mu, betamean, v, q)
    def predict(self, newdata=None):
        """
        This function performs prediction on regression model on new data if available or current stored data in object
        Usage:  obj.predict()
                obj.predict(newdata)

        :param newdata: dict containing new data for prediction (needs the keys below, if None predicts on training data)
        :type newdata: dict
        :param beta: numpy ndarray of shape (M,N) of M functions with N samples
        :param y: truth if available
        """

        if newdata != None:
            beta = newdata['beta']
            y = newdata['y']

            T = self.q.shape[1]
            n = beta.shape[2]
            N = self.q.shape[2]

            q, beta = preproc_open_curve(beta, T)

            m = self.n_classes
            y_pred = np.zeros((n, m))
            for ii in range(0, n):
                diff = self.q - q[:, :, ii][:, :, np.newaxis]
                dist = np.zeros(N)
                for jj in range(0, N):
                    dist[jj] = np.linalg.norm(np.abs(diff[:, :, jj]))**2
                beta1 = beta[:, :, ii]
                beta1 = self.O[:, :, dist.argmin()].dot(beta1)
                beta1 = cf.group_action_by_gamma_coord(
                    beta1, self.gamma[:, dist.argmin()])
                q_tmp = cf.curve_to_q(beta1)[0]

                for jj in range(0, m):
                    y_pred[ii, jj] = self.alpha[jj] + cf.innerprod_q2(
                        q_tmp, self.nu[:, :, jj])

            if y is None:
                y_pred = phi(y_pred.ravel())
                y_pred = y_pred.reshape(n, m)
                y_labels = y_pred.argmax(axis=1) + 1
                self.PC = None
            else:
                y_pred = phi(y_pred.ravel())
                y_pred = y_pred.reshape(n, m)
                y_labels = y_pred.argmax(axis=1) + 1
                PC = np.zeros(m)
                cls_set = np.arange(1, m + 1)
                for ii in range(0, m):
                    cls_sub = np.delete(cls_set, ii)
                    TP = sum(y[y_labels == (ii + 1)] == (ii + 1))
                    FP = sum(y[np.in1d(y_labels, cls_sub)] == (ii + 1))
                    TN = sum(y[np.in1d(y_labels, cls_sub)] == y_labels[np.in1d(
                        y_labels, cls_sub)])
                    FN = sum(np.in1d(y[y_labels == (ii + 1)], cls_sub))
                    PC[ii] = (TP + TN) / float(TP + FP + FN + TN)

                self.PC = sum(y == y_labels) / float(y_labels.size)

            self.y_pred = y_pred
            self.y_labels = y_labels

        else:
            n = self.q.shape[2]
            N = self.q.shape[2]
            m = self.n_classes
            y_pred = np.zeros((n, m))
            for ii in range(0, n):
                diff = self.q - self.q[:, :, ii][:, :, np.newaxis]
                dist = np.zeros(N)
                for jj in range(0, N):
                    dist[jj] = np.linalg.norm(np.abs(diff[:, :, jj]))**2
                beta1 = self.beta0[:, :, ii]
                beta1 = self.O[:, :, dist.argmin()].dot(beta1)
                beta1 = cf.group_action_by_gamma_coord(
                    beta1, self.gamma[:, dist.argmin()])
                q_tmp = cf.curve_to_q(beta1)[0]

                for jj in range(0, m):
                    y_pred[ii, jj] = self.alpha[jj] + cf.innerprod_q2(
                        q_tmp, self.nu[:, :, jj])

            y_pred = phi(y_pred.ravel())
            y_pred = y_pred.reshape(n, m)
            y_labels = y_pred.argmax(axis=1) + 1
            PC = np.zeros(m)
            cls_set = np.arange(1, m + 1)
            for ii in range(0, m):
                cls_sub = np.delete(cls_set, ii)
                TP = sum(y[y_labels == (ii + 1)] == (ii + 1))
                FP = sum(y[np.in1d(y_labels, cls_sub)] == (ii + 1))
                TN = sum(y[np.in1d(y_labels, cls_sub)] == y_labels[np.in1d(
                    y_labels, cls_sub)])
                FN = sum(np.in1d(y[y_labels == (ii + 1)], cls_sub))
                PC[ii] = (TP + TN) / float(TP + FP + FN + TN)

            self.PC = sum(self.y == y_labels) / float(y_labels.size)

            self.y_pred = y_pred
            self.y_labels = y_labels

        return
Exemple #19
0
def init_path_rand(beta1, beta_mid, beta2, T=100, k=5):
    """
    Initializes a path in \cal{C}. beta1, beta_mid beta2 are already
    standardized curves. Creates a path from beta1 to beta_mid to beta2 in
    shape space, then projects to the closed shape manifold.

    :param beta1: numpy ndarray of shape (2,M) of M samples (first curve)
    :param betamid: numpy ndarray of shape (2,M) of M samples (mid curve)
    :param beta2: numpy ndarray of shape (2,M) of M samples (end curve)
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return alpha: a path between two q-functions
    :return beta:  a path between two curves
    :return O: rotation matrix

    """
    alpha = zeros((2, T, k))
    beta = zeros((2, T, k))

    q1 = cf.curve_to_q(beta1)
    q_mid = cf.curve_to_q(beta_mid)

    # find optimal rotation of q2
    beta2, O1, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2)
    q2 = cf.curve_to_q(beta2)

    # find the optimal coorespondence
    gam = cf.optimum_reparam_curve(q2, q1)
    gamI = uf.invertGamma(gam)

    # apply optimal reparametrization
    beta2n = cf.group_action_by_gamma_coord(beta2, gamI)

    # find optimal rotation of q2
    beta2n, O2, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2n)
    centroid2 = cf.calculatecentroid(beta2n)
    beta2n = beta2n - tile(centroid2, [T, 1]).T
    q2n = cf.curve_to_q(beta2n)
    O = O1.dot(O2)

    # Initialize a path as a geodesic through q1 --- q_mid --- q2
    theta1 = arccos(cf.innerprod_q2(q1, q_mid))
    theta2 = arccos(cf.innerprod_q2(q_mid, q2n))
    tmp = arange(2, int((k - 1) / 2) + 1)
    t = zeros(tmp.size)
    alpha[:, :, 0] = q1
    beta[:, :, 0] = beta1

    i = 0
    for tau in range(2, int((k - 1) / 2) + 1):
        t[i] = (tau - 1.0) / ((k - 1) / 2.0)
        qnew = (1 / sin(theta1)) * (sin((1 - t[i]) * theta1) * q1 + sin(t[i] * theta1) * q_mid)
        alpha[:, :, tau - 1] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau - 1])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau - 1] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, int((k - 1) / 2)] = q_mid
    beta[:, :, int((k - 1) / 2)] = beta_mid

    i = 0
    for tau in range(int((k - 1) / 2) + 1, k - 1):
        qnew = (1 / sin(theta2)) * (sin((1 - t[i]) * theta2) * q_mid + sin(t[i] * theta2) * q2n)
        alpha[:, :, tau] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1 * cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, k - 1] = q2n
    beta[:, :, k - 1] = beta2n

    return (alpha, beta, O)
Exemple #20
0
def init_path_rand(beta1, beta_mid, beta2, T=100, k=5):
    r"""
    Initializes a path in :math:`\cal{C}`. beta1, beta_mid beta2 are already
    standardized curves. Creates a path from beta1 to beta_mid to beta2 in
    shape space, then projects to the closed shape manifold.

    :param beta1: numpy ndarray of shape (2,M) of M samples (first curve)
    :param betamid: numpy ndarray of shape (2,M) of M samples (mid curve)
    :param beta2: numpy ndarray of shape (2,M) of M samples (end curve)
    :param T: Number of samples of curve (Default = 100)
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return alpha: a path between two q-functions
    :return beta:  a path between two curves
    :return O: rotation matrix

    """
    alpha = zeros((2, T, k))
    beta = zeros((2, T, k))

    q1 = cf.curve_to_q(beta1)
    q_mid = cf.curve_to_q(beta_mid)

    # find optimal rotation of q2
    beta2, O1, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2)
    q2 = cf.curve_to_q(beta2)

    # find the optimal coorespondence
    gam = cf.optimum_reparam_curve(q2, q1)
    gamI = uf.invertGamma(gam)

    # apply optimal reparametrization
    beta2n = cf.group_action_by_gamma_coord(beta2, gamI)

    # find optimal rotation of q2
    beta2n, O2, tau1 = cf.find_rotation_and_seed_coord(beta1, beta2n)
    centroid2 = cf.calculatecentroid(beta2n)
    beta2n = beta2n - tile(centroid2, [T, 1]).T
    q2n = cf.curve_to_q(beta2n)
    O = O1.dot(O2)

    # Initialize a path as a geodesic through q1 --- q_mid --- q2
    theta1 = arccos(cf.innerprod_q2(q1, q_mid))
    theta2 = arccos(cf.innerprod_q2(q_mid, q2n))
    tmp = arange(2, int((k-1)/2)+1)
    t = zeros(tmp.size)
    alpha[:, :, 0] = q1
    beta[:, :, 0] = beta1

    i = 0
    for tau in range(2, int((k-1)/2)+1):
        t[i] = (tau-1.)/((k-1)/2.)
        qnew = (1/sin(theta1))*(sin((1-t[i])*theta1)*q1+sin(t[i]*theta1)*q_mid)
        alpha[:, :, tau-1] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau-1])
        a = -1*cf.calculatecentroid(x)
        beta[:, :, tau-1] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, int((k-1)/2)] = q_mid
    beta[:, :, int((k-1)/2)] = beta_mid

    i = 0
    for tau in range(int((k-1)/2)+1, k-1):
        qnew = (1/sin(theta2))*(sin((1-t[i])*theta2)*q_mid
                                + sin(t[i]*theta2)*q2n)
        alpha[:, :, tau] = cf.project_curve(qnew)
        x = cf.q_to_curve(alpha[:, :, tau])
        a = -1*cf.calculatecentroid(x)
        beta[:, :, tau] = x + tile(a, [T, 1]).T
        i += 1

    alpha[:, :, k-1] = q2n
    beta[:, :, k-1] = beta2n

    return(alpha, beta, O)
def curve_karcher_mean(beta, mode='O'):
    """
    This claculates the mean of a set of curves
    :param beta: numpy ndarray of shape (n, M, N) describing N curves
    in R^M
    :param mode: Open ('O') or closed curve ('C') (default 'O')

    :rtype: tuple of numpy array
    :return mu: mean srvf
    :return betamean: mean curve
    :return v: shooting vectors
    :return q: srvfs

    """
    n, T, N = beta.shape
    q = zeros((n, T, N))
    for ii in range(0, N):
        q[:, :, ii] = cf.curve_to_q(beta[:, :, ii])

    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    # Initialize mu as one of the shapes
    mu = q[:, :, 0]
    betamean = beta[:, :, 0]

    delta = 0.5
    tolv = 1e-4
    told = 5*1e-3
    maxit = 20
    itr = 0
    sumd = zeros(maxit+1)
    v = zeros((n, T, N))
    normvbar = zeros(maxit+1)

    while itr < maxit:
        print("Iteration: %d" % itr)

        mu = mu / sqrt(cf.innerprod_q2(mu, mu))

        sumv = zeros((2, T))
        sumd[itr+1] = 0
        out = Parallel(n_jobs=-1)(delayed(karcher_calc)(beta[:, :, n],
                                  q[:, :, n], betamean, mu, mode) for n in range(N))
        v = zeros((n, T, N))
        for i in range(0, N):
            v[:, :, i] = out[i][0]
            sumd[itr+1] = sumd[itr+1] + out[i][1]**2

        sumv = v.sum(axis=2)

        # Compute average direction of tangent vectors v_i
        vbar = sumv/float(N)

        normvbar[itr] = sqrt(cf.innerprod_q2(vbar, vbar))
        normv = normvbar[itr]

        if normv > tolv and fabs(sumd[itr+1]-sumd[itr]) > told:
            # Update mu in direction of vbar
            mu = cos(delta*normvbar[itr])*mu + sin(delta*normvbar[itr]) * vbar/normvbar[itr]

            if mode == 1:
                mu = cf.project_curve(mu)

            x = cf.q_to_curve(mu)
            a = -1*cf.calculatecentroid(x)
            betamean = x + tile(a, [T, 1]).T
        else:
            break

        itr += 1

    return(mu, betamean, v, q)
def curve_principal_directions(betamean, mu, K, mode='O', no=3, N=5):
    """
    Computes principal direction of variation specified by no. N is
    Number of shapes away from mean. Creates 2*N+1 shape sequence

    :param betamean: numpy ndarray of shape (n, M) describing the mean curve
    :param mu: numpy ndarray of shape (n, M) describing the mean srvf
    :param K: numpy ndarray of shape (M, M) describing the covariance
    :param mode: Open ('O') or closed curve ('C') (default 'O')
    :param no: number of direction (default 3)
    :param N: number of shapes (2*N+1) (default 5)

    :rtype: tuple of numpy array
    :return pd: principal directions

    """
    n, T = betamean.shape
    modes = ['O', 'C']
    mode = [i for i, x in enumerate(modes) if x == mode]
    if len(mode) == 0:
        mode = 0
    else:
        mode = mode[0]

    U, s, V = svd(K)

    qarray = empty((no, 2*N+1), dtype=object)
    qarray1 = empty(N, dtype=object)
    qarray2 = empty(N, dtype=object)
    pd = empty((no, 2*N+1), dtype=object)
    pd1 = empty(N, dtype=object)
    pd2 = empty(N, dtype=object)
    for m in range(0, no):
        princDir = vstack((U[0:T, m], U[T:2*T, m]))
        v = sqrt(s[m]) * princDir
        q1 = mu
        epsilon = 2./N

        # Forward direction from mean
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1 + sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray1[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd1[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        # Backward direction from mean
        v = -sqrt(s[m])*princDir
        q1 = mu
        for i in range(0, N):
            normv = sqrt(cf.innerprod_q2(v, v))

            if normv < 1e-4:
                q2 = mu
            else:
                q2 = cos(epsilon*normv)*q1+sin(epsilon*normv)*v/normv
                if mode == 1:
                    q2 = cf.project_curve(q2)

            qarray2[i] = q2
            p = cf.q_to_curve(q2)
            centroid1 = -1*cf.calculatecentroid(p)
            beta_scaled, scale = cf.scale_curve(p + tile(centroid1, [T, 1]).T)
            pd2[i] = beta_scaled

            # Parallel translate tangent vector
            basis2 = cf.find_basis_normal(q2)
            v = cf.parallel_translate(v, q1, q2, basis2, mode)

            q1 = q2

        for i in range(0, N):
            qarray[m, i] = qarray2[(N-1)-i]
            pd[m, i] = pd2[(N-1)-i]

        qarray[m, N] = mu
        centroid1 = -1*cf.calculatecentroid(betamean)
        beta_scaled, scale = cf.scale_curve(betamean +
                                            tile(centroid1, [T, 1]).T)
        pd[m, N] = beta_scaled

        for i in range(N+1, 2*N+1):
            qarray[m, i] = qarray1[i-(N+1)]
            pd[m, i] = pd1[i-(N+1)]

    return(pd)
Exemple #23
0
def geod_sphere(beta1, beta2, k=5):
    """
    This function calculates the geodesics between open curves beta1 and
    beta2 with k steps along path

    :param beta1: numpy ndarray of shape (2,M) of M samples
    :param beta2: numpy ndarray of shape (2,M) of M samples
    :param k: number of samples along path (Default = 5)

    :rtype: numpy ndarray
    :return dist: geodesic distance
    :return path: geodesic path
    :return O: rotation matrix

    """
    lam = 0.0
    elastic = 1
    rotation = 1
    returnpath = 1
    n, T = beta1.shape

    beta1 = cf.resamplecurve(beta1, T)
    beta2 = cf.resamplecurve(beta2, T)

    centroid1 = cf.calculatecentroid(beta1)
    beta1 = beta1 - tile(centroid1, [T, 1]).T
    centroid2 = cf.calculatecentroid(beta2)
    beta2 = beta2 - tile(centroid2, [T, 1]).T

    q1 = cf.curve_to_q(beta1)
    if rotation:
        beta2, O1, tau = cf.find_rotation_and_seed_coord(beta1, beta2)
        q2 = cf.curve_to_q(beta2)
    else:
        O1 = eye(2)
        q2 = cf.curve_to_q(beta2)

    if elastic:
        # Find the optimal coorespondence
        gam = cf.optimum_reparam_curve(q2, q1, lam)
        gamI = uf.invertGamma(gam)
        # Applying optimal re-parameterization to the second curve
        beta2n = cf.group_action_by_gamma_coord(beta2, gamI)
        q2n = cf.curve_to_q(beta2n)

        if rotation:
            beta2n, O2, tau = cf.find_rotation_and_seed_coord(beta1, beta2n)
            centroid2 = cf.calculatecentroid(beta2n)
            beta2n = beta2n - tile(centroid2, [T, 1]).T
            q2n = cf.curve_to_q(beta2n)
            O = O1.dot(O2)
    else:
        q2n = q2
        O = O1

    # Forming geodesic between the registered curves
    dist = arccos(cf.innerprod_q2(q1, q2n))

    if returnpath:
        PsiQ = zeros((n, T, k))
        PsiX = zeros((n, T, k))
        for tau in range(0, k):
            s = dist * tau / (k - 1.)
            PsiQ[:, :, tau] = (sin(dist-s)*q1+sin(s)*q2n)/sin(dist)
            PsiX[:, :, tau] = cf.q_to_curve(PsiQ[:, :, tau])

        path = PsiQ
    else:
        path = 0

    return(dist, path, O)
    def predict(self, newdata=None):
        """
        This function performs prediction on regression model on new data if available or current stored data in object
        Usage:  obj.predict()
                obj.predict(newdata)

        :param newdata: dict containing new data for prediction (needs the keys below, if None predicts on training data)
        :type newdata: dict
        :param beta: numpy ndarray of shape (M,N) of M functions with N samples
        :param y: truth if available
        """

        if newdata != None:
            beta = newdata['beta']
            y = newdata['y']

            T = self.q.shape[1]
            n = beta.shape[2]
            N = self.q.shape[2]

            q, beta = preproc_open_curve(beta, T)

            y_pred = np.zeros(n)
            for ii in range(0, n):
                diff = self.q - q[:, :, ii][:, :, np.newaxis]
                dist = np.zeros(N)
                for jj in range(0, N):
                    dist[jj] = np.linalg.norm(np.abs(diff[:, :, jj]))**2
                beta1 = beta[:, :, ii]
                beta1 = self.O[:, :, dist.argmin()].dot(beta1)
                beta1 = cf.group_action_by_gamma_coord(
                    beta1, self.gamma[:, dist.argmin()])
                q_tmp = cf.curve_to_q(beta1)[0]

                y_pred[ii] = self.alpha + cf.innerprod_q2(q_tmp, self.nu)

            if y is None:
                y_pred = phi(y_pred)
                y_labels = np.ones(n)
                y_labels[y_pred < 0.5] = -1
                self.PC = None
            else:
                y_pred = phi(y_pred)
                y_labels = np.ones(n)
                y_labels[y_pred < 0.5] = -1
                TP = sum(y[y_labels == 1] == 1)
                FP = sum(y[y_labels == -1] == 1)
                TN = sum(y[y_labels == -1] == -1)
                FN = sum(y[y_labels == 1] == -1)
                self.PC = (TP + TN) / float(TP + FP + FN + TN)

            self.y_pred = y_pred
            self.y_labels = y_labels

        else:
            n = self.q.shape[2]
            N = self.q.shape[2]
            y_pred = np.zeros(n)
            for ii in range(0, n):
                diff = self.q - self.q[:, :, ii][:, :, np.newaxis]
                dist = np.zeros(N)
                for jj in range(0, N):
                    dist[jj] = np.linalg.norm(np.abs(diff[:, :, jj]))**2
                beta1 = self.beta0[:, :, ii]
                beta1 = self.O[:, :, dist.argmin()].dot(beta1)
                beta1 = cf.group_action_by_gamma_coord(
                    beta1, self.gamma[:, dist.argmin()])
                q_tmp = cf.curve_to_q(beta1)[0]

                y_pred[ii] = self.alpha + cf.innerprod_q2(q_tmp, self.nu)

            y_pred = phi(y_pred)
            y_labels = np.ones(n)
            y_labels[y_pred < 0.5] = -1
            TP = sum(self.y[y_labels == 1] == 1)
            FP = sum(self.y[y_labels == -1] == 1)
            TN = sum(self.y[y_labels == -1] == -1)
            FN = sum(self.y[y_labels == 1] == -1)
            self.PC = (TP + TN) / float(TP + FP + FN + TN)

            self.y_pred = y_pred
            self.y_labels = y_labels

        return
    def calc_model(self, B=None, lam=0, df=40, T=200, max_itr=20, cores=-1):
        """
        This function identifies a regression model for open curves
        using elastic methods

        :param B: optional matrix describing Basis elements
        :param lam: regularization parameter (default 0)
        :param df: number of degrees of freedom B-spline (default 20)
        :param T: number of desired samples along curve (default 100)
        :param max_itr: maximum number of iterations (default 20)
        :param cores: number of cores for parallel processing (default all)
        """
        n = self.beta.shape[0]
        N = self.beta.shape[2]
        time = np.linspace(0, 1, T)

        if n > 500:
            parallel = True
        elif T > 100:
            parallel = True
        else:
            parallel = False

        binsize = np.diff(time)
        binsize = binsize.mean()

        # Create B-Spline Basis if none provided
        if B is None:
            B = bs(time, df=df, degree=4, include_intercept=True)
        Nb = B.shape[1]

        # second derivative for regularization
        Bdiff = np.zeros((T, Nb))
        for ii in range(0, Nb):
            Bdiff[:, ii] = np.gradient(np.gradient(B[:, ii], binsize), binsize)

        q, beta = preproc_open_curve(self.beta, T)
        self.q = q
        beta0 = beta.copy()
        qn = q.copy()

        gamma = np.tile(np.linspace(0, 1, T), (N, 1))
        gamma = gamma.transpose()
        O_hat = np.tile(np.eye(n), (N, 1, 1)).T

        itr = 1
        self.SSE = np.zeros(max_itr)
        while itr <= max_itr:
            print("Iteration: %d" % itr)
            # align data

            # OLS using basis
            Phi = np.ones((N, n * Nb + 1))
            for ii in range(0, N):
                for jj in range(0, n):
                    for kk in range(1, Nb + 1):
                        Phi[ii,
                            jj * Nb + kk] = trapz(qn[jj, :, ii] * B[:, kk - 1],
                                                  time)

            R = np.zeros((n * Nb + 1, n * Nb + 1))
            for kk in range(0, n):
                for ii in range(1, Nb + 1):
                    for jj in range(1, Nb + 1):
                        R[kk * Nb + ii, kk * Nb + jj] = trapz(
                            Bdiff[:, ii - 1] * Bdiff[:, jj - 1], time)

            xx = np.dot(Phi.T, Phi)
            inv_xx = inv(xx + lam * R)
            xy = np.dot(Phi.T, self.y)
            b = np.dot(inv_xx, xy)

            alpha = b[0]
            nu = np.zeros((n, T))
            for ii in range(0, n):
                nu[ii, :] = B.dot(b[(ii * Nb + 1):((ii + 1) * Nb + 1)])

            # compute the SSE
            int_X = np.zeros(N)
            for ii in range(0, N):
                int_X[ii] = cf.innerprod_q2(qn[:, :, ii], nu)

            self.SSE[itr - 1] = sum((self.y.reshape(N) - alpha - int_X)**2)

            # find gamma
            gamma_new = np.zeros((T, N))
            if parallel:
                out = Parallel(n_jobs=cores)(
                    delayed(regression_warp)(nu, q[:, :, n], self.y[n], alpha)
                    for n in range(N))
                for ii in range(0, N):
                    gamma_new[:, ii] = out[ii][0]
                    beta1n = cf.group_action_by_gamma_coord(
                        out[ii][1].dot(beta0[:, :, ii]), out[ii][0])
                    beta[:, :, ii] = beta1n
                    O_hat[:, :, ii] = out[ii][1]
                    qn[:, :, ii] = cf.curve_to_q(beta1n)[0]
            else:
                for ii in range(0, N):
                    q1 = q[:, :, ii]
                    gammatmp, Otmp = regression_warp(nu, q1, self.y[ii], alpha)
                    gamma_new[:, ii] = gammatmp
                    beta1n = cf.group_action_by_gamma_coord(
                        Otmp.dot(beta0[:, :, ii]), gammatmp)
                    beta[:, :, ii] = beta1n
                    O_hat[:, :, ii] = Otmp
                    qn[:, :, ii] = cf.curve_to_q(beta1n)[0]

            if np.abs(self.SSE[itr - 1] - self.SSE[itr - 2]) < 1e-15:
                break
            else:
                gamma = gamma_new

            itr += 1

        tau = np.zeros(N)
        self.alpha = alpha
        self.nu = nu
        self.beta0 = beta0
        self.betan = beta
        self.gamma = gamma
        self.qn = qn
        self.B = B
        self.O = O_hat
        self.b = b[1:-1]
        self.SSE = self.SSE[0:itr]

        return
Exemple #26
0
def geod_sphere(beta1, beta2, k=5, scale=False, rotation=True, center=True):
    """
    This function calculates the geodesics between open curves beta1 and
    beta2 with k steps along path

    :param beta1: numpy ndarray of shape (2,M) of M samples
    :param beta2: numpy ndarray of shape (2,M) of M samples
    :param k: number of samples along path (Default = 5)
    :param scale: include length (Default = False)
    :param rotation: include rotation (Default = True)
    :param center: center curves at origin (Default = True)

    :rtype: numpy ndarray
    :return dist: geodesic distance
    :return path: geodesic path
    :return O: rotation matrix

    """
    lam = 0.0
    returnpath = 1
    n, T = beta1.shape

    if center:
        centroid1 = cf.calculatecentroid(beta1)
        beta1 = beta1 - tile(centroid1, [T, 1]).T
        centroid2 = cf.calculatecentroid(beta2)
        beta2 = beta2 - tile(centroid2, [T, 1]).T

    q1, len1, lenq1 = cf.curve_to_q(beta1)
    if scale:
        q2, len2, lenq2 = cf.curve_to_q(beta2)
    beta2, q2n, O1, gamI = cf.find_rotation_and_seed_coord(beta1,
                                                           beta2,
                                                           rotation=rotation)

    # Forming geodesic between the registered curves
    val = cf.innerprod_q2(q1, q2n)
    if val > 1:
        if val < 1.0001:  # assume numerical error
            import warnings
            warnings.warn(
                f"Corrected a numerical error in geod_sphere: rounded {val} to 1"
            )
            val = 1
        else:
            raise Exception(
                f"innerpod_q2 computed an inner product of {val} which is much greater than 1"
            )
    elif val < -1:
        if val > -1.0001:  # assume numerical error
            import warnings
            warnings.warn(
                f"Corrected a numerical error in geod_sphere: rounded {val} to -1"
            )
            val = -1
        else:
            raise Exception(
                f"innerpod_q2 computed an inner product of {val} which is much less than -1"
            )

    dist = arccos(val)
    if isnan(dist):
        raise Exception("geod_sphere computed a dist value which is NaN")

    if returnpath:
        PsiQ = zeros((n, T, k))
        PsiX = zeros((n, T, k))
        for tau in range(0, k):
            if tau == 0:
                tau1 = 0
            else:
                tau1 = tau / (k - 1.)

            s = dist * tau1
            if dist > 0:
                PsiQ[:, :,
                     tau] = (sin(dist - s) * q1 + sin(s) * q2n) / sin(dist)
            elif dist == 0:
                PsiQ[:, :, tau] = (1 - tau1) * q1 + (tau1) * q2n
            else:
                raise Exception("geod_sphere computed a negative distance")

            if scale:
                scl = len1**(1 - tau1) * len2**(tau1)
            else:
                scl = 1
            beta = scl * cf.q_to_curve(PsiQ[:, :, tau])
            if center:
                centroid = cf.calculatecentroid(beta)
                beta = beta - tile(centroid, [T, 1]).T
            PsiX[:, :, tau] = beta

        path = PsiX
    else:
        path = 0

    return (dist, path, PsiQ)