def random_res(in_l, f1, f2, tlimit, exe_time):
    start_time = time.time()
    len_inl = len(in_l)
    l_var = []
    in_var = in_l
    for i in in_var:
        tmp_l = depart(i[0], i[1])
        l_var.append(tmp_l)
    l_confs = []
    for element in itertools.product(*l_var):
        l_confs.append(element)
    len_confs = len(l_confs)
    print len_inl
    print len_confs * pow(20, len_inl) * tlimit / (exe_time)
    n = int(
        pow((len_confs * pow(20.0, float(len_inl)) * tlimit / (exe_time)),
            1.0 / float(len_inl)))
    print n
    var_l = []
    for k in list(in_l):
        var_l.append(sorted(np.random.uniform(k[0], k[1], n)))
    input_l = []
    for element in itertools.product(*var_l):
        input_l.append(element)
    res_mp = test_mp_fun(f1, input_l)
    # res_mp = paral_proc_mppl(X,cof,200,1)
    res_d = test_gsl_fun(f2, input_l)
    # res_d = paral_proc_pl(X,cof,len(cof)-1,1)
    re_err_1 = [(np.fabs(fdistan.fdistan(op_f[0], float(op_r[0]))), op_f[1])
                for op_f, op_r in zip(res_d, res_mp)]
    error_l = sorted(re_err_1, reverse=True)
    end_time = time.time() - start_time
    return (error_l[0][0], error_l[0][1], end_time)
def test_two_fun(f1, f2, input_l):
    res_mp = test_mp_fun(f1, input_l)
    res_d = test_gsl_fun(f2, input_l)
    re_err_1 = [(np.fabs(fdistan.fdistan(op_f[0], float(op_r[0]))), op_f[1])
                for op_f, op_r in zip(res_d, res_mp)]
    error_l = sorted(re_err_1, reverse=True)
    return (error_l[0][0], error_l[0][1])
def para_random_res_tmp(in_l, f1, f2, per):
    start_time = time.time()
    var_l = []
    for k in list(in_l):
        n = int(per * fdistan.fdistan(k[0], k[1]))
        print n
        var_l.append(sorted(np.random.uniform(k[0], k[1], n)))
    input_l = []
    vp = 0
    tmp_var_l = []
    tmp_input_l = []
    for vars in var_l:
        tmp_var_l.append(vars)
        if vp == 1:
            for iters in itertools.product(*tmp_var_l):
                tmp_input_l.append(iters)
            tmp_var_l = []
            input_l.append(tmp_input_l)
            vp = 0
        else:
            vp = vp + 1
    if tmp_var_l != []:
        input_l.append(tmp_var_l)
    p = Pool()
    lf1 = []
    lf2 = []
    re_err_1 = []
    for inp in range(0, len(input_l[1][0]), 8):
        one_test_l = []
        tmp_test_l = []
        for ti in range(0, 8):
            if inp + ti < len(input_l[1][0]):
                for tnp in itertools.product(input_l[0],
                                             [input_l[1][0][inp + ti]]):
                    tmp_tnp = list(tnp[0])
                    tmp_tnp.append(tnp[1])
                    tmp_test_l.append(tmp_tnp)
                one_test_l.append(tmp_test_l)
        lf1.extend([f1] * len(one_test_l))
        lf2.extend([f2] * len(one_test_l))
        tmp_res = p.map(test_two_fun, lf1, lf2, one_test_l)
        tmp_res = sorted(tmp_res, reverse=True)
        re_err_1.append(tmp_res[0])
    error_l = sorted(re_err_1, reverse=True)
    end_time = time.time() - start_time
    return (error_l[0][0], error_l[0][1], end_time)
Exemple #4
0
def pfulp_test_minus(in_l,f1,f2,tlimit,exe_time):
    #输入区间上下界
    in_max = in_l[1]
    in_min = in_l[0]
    max_err = 0.0
    n = int(tlimit*1000/exe_time)
    # 得到输入X
    X = sorted(np.random.uniform(in_min, in_max, n))
    # 得到高精度输出
    res_mp = test_mp_fun(f1, X)
    # res_mp = paral_proc_mppl(X,cof,200,1)
    # 得到double输出
    res_d = test_gsl_fun(f2, X)
    # res_d = paral_proc_pl(X,cof,len(cof)-1,1)
    # 根据公式,得到相对误差nmp.abs((op_f[0] - op_r[0]) / (nmp.nextafter(float(op_r[0]), float(op_r[0]) + 1) - float(op_r[0])))
    re_err_1 = [(fdistan.fdistan(op_f[0], float(op_r[0])), op_f[1]) for op_f, op_r in zip(res_d, res_mp)]
    error_l = sorted(re_err_1,reverse=True)
    return (error_l[0][0],error_l[0][1],in_l)
def para_random_res(in_l, f1, f2, per, cpu_n):
    start_time = time.time()
    var_l = []
    lf1 = []
    lf2 = []
    p = Pool(cpu_n)
    for k in list(in_l):
        n = int(per * fdistan.fdistan(k[0], k[1]))
        print n
        var_l.append(sorted(np.random.uniform(k[0], k[1], n)))
    input_l = []
    for element in itertools.product(*var_l):
        inp = list(element)
        input_l.append(inp)
    input_l = chunks(input_l, 8)
    lf1.extend([f1] * len(input_l))
    lf2.extend([f2] * len(input_l))
    tmp_res = p.map(test_two_fun, lf1, lf2, input_l)
    tmp_res = sorted(tmp_res, reverse=True)
    end_time = time.time() - start_time
    return (tmp_res[0][0], tmp_res[0][1], end_time)
def para_random_res_tlimit(in_l, f1, f2, limit_n, cpu_n):
    start_time = time.time()
    var_l = []
    lf1 = []
    lf2 = []
    p = Pool(cpu_n)
    n_l = []
    ts = 0
    i = 0
    for k in list(in_l):
        dis_i = int(fdistan.fdistan(k[0], k[1]))
        n_l.append(dis_i)
        ts = dis_i + ts
    print n_l
    ts = float(ts)
    tmp_n = [i / ts for i in n_l]
    print tmp_n
    tmp_mul = reduce(mul, tmp_n)
    print tmp_mul
    basic_k = pow((limit_n / tmp_mul), 1.0 / len(in_l))
    print basic_k
    j = 0
    for k in list(in_l):
        n = int(tmp_n[j] * basic_k)
        print n
        var_l.append(sorted(np.random.uniform(k[0], k[1], n)))
        j = j + 1
    input_l = []
    for element in itertools.product(*var_l):
        inp = list(element)
        input_l.append(inp)
    print len(input_l)
    input_l = chunks(input_l, 8)
    lf1.extend([f1] * len(input_l))
    lf2.extend([f2] * len(input_l))
    tmp_res = p.map(test_two_fun, lf1, lf2, input_l)
    tmp_res = sorted(tmp_res, reverse=True)
    end_time = time.time() - start_time
    return (tmp_res[0][0], tmp_res[0][1], end_time)
def random_search(in_var, f1, f2, n):
    var_l = []
    l_var = []
    for i in in_var:
        tmp_l = depart(i[0], i[1])
        l_var.append(tmp_l)
    l_confs = []
    for element in itertools.product(*l_var):
        l_confs.append(element)
    input_l = []
    for k in l_confs:
        var_l = []
        for z in k:
            var_l.append(sorted(np.random.uniform(z[0], z[1], n)))
        for element in itertools.product(*var_l):
            input_l.append(element)
    res_mp = test_mp_fun(f1, input_l)
    # res_mp = paral_proc_mppl(X,cof,200,1)
    res_d = test_gsl_fun(f2, input_l)
    # res_d = paral_proc_pl(X,cof,len(cof)-1,1)
    re_err_1 = [(np.fabs(fdistan.fdistan(op_f[0], float(op_r[0]))), op_f[1])
                for op_f, op_r in zip(res_d, res_mp)]
    error_l = sorted(re_err_1, reverse=True)
    return (error_l[0][0], error_l[0][1], in_var)
Exemple #8
0
def get_distan(f1,f2,x):
    m_x = float(f1(x))
    f_x = f2(x)
    return np.fabs(fdistan.fdistan(m_x,f_x))
Exemple #9
0
def binary_res(in_l,f1,f2,iter,n):
    #输入区间上下界
    in_max = in_l[1]
    in_min = in_l[0]
    max_err = 0.0
    #考虑迭代次数iter,每个区间取点数目n
    for i in range(0,iter):
        mid = (in_max-in_min)/2.0+in_min

        #计算区间1的最大误差
        #得到输入X
        X = sorted(np.random.uniform(in_min, mid, n))
        #得到高精度输出
        res_mp = test_mp_fun(f1,X)
        #res_mp = paral_proc_mppl(X,cof,200,1)
        #得到double输出
        res_d = test_gsl_fun(f2,X)
        #res_d = paral_proc_pl(X,cof,len(cof)-1,1)
        #根据公式,得到相对误差nmp.abs((op_f[0] - op_r[0]) / (nmp.nextafter(float(op_r[0]), float(op_r[0]) + 1) - float(op_r[0])))
        re_err_1=[(fdistan.fdistan(op_f[0],float(op_r[0])),op_f[1]) for op_f, op_r in zip(res_d, res_mp)]
        mxer = sorted(re_err_1, reverse=True)[0][0]
        #re_err_1 = [(nmp.abs((op_f[0]-op_r[0])/(nmp.nextafter(float(op_r[0]),float(op_r[0])+1)-float(op_r[0]))),op_f[1]) for op_f,op_r in zip(res_d,res_mp)]

        #计算区间2的最大误差
        # 得到输入X
        X = sorted(np.random.uniform(mid, in_max, n))
        # 得到高精度输出
        res_mp = test_mp_fun(f1, X)
        # res_mp = paral_proc_mppl(X,cof,200,1)
        # 得到double输出
        res_d = test_gsl_fun(f2, X)
        # res_d = paral_proc_pl(X,cof,len(cof)-1,1)
        # 根据公式,得到相对误差nmp.abs((op_f[0] - op_r[0]) / (nmp.nextafter(float(op_r[0]), float(op_r[0]) + 1) - float(op_r[0])))
        re_err_2 = [(fdistan.fdistan(op_f[0],float(op_r[0])),op_f[1])
                    for op_f, op_r in
                    zip(res_d, res_mp)]
        #re_err_2 = [(nmp.abs((op_f[0]-op_r[0])/(nmp.nextafter(float(op_r[0]),float(op_r[0])+1)-float(op_r[0]))),op_f[1]) for op_f,op_r in zip(res_d,res_mp)]
        #分别得到两个区间的最大误差:
        re_err_3 = sorted(re_err_2,reverse=True)
        x_1 = 0.0
        x_2 = 0.0
        erl_1 = 0.0
        for j in re_err_1:
            if j[0] > erl_1:
                erl_1 = j[0]
                x_1 = j[1]
        erl_2 = 0.0
        for j in re_err_2:
            if j[0] > erl_2:
                erl_2 = j[0]
                x_2 = j[1]
        if(erl_1>erl_2):
            #如果区间1的相对误差最大值更大,那么继续在区间1内搜索
            in_min = in_min
            in_max = mid
            max_err = erl_1
            out_min = in_min
            out_max = in_max
            out_x = x_1
        else:
            in_min = mid
            in_max = in_max
            max_err = erl_2
            out_min = in_min
            out_max = in_max
            out_x = x_2
    return (max_err,out_x,[out_min,out_max])
Exemple #10
0
def distan_cal(a,b):
    return np.fabs(fdistan.fdistan(a,b))
Exemple #11
0
def test_sig(f1,f2,x,y):
    d_x = f2(x,y)
    m_x = float(f1(x,y))
    print fdistan.fdistan(d_x,m_x)
    print d_x-m_x