def testing_4(): global clfback, clfarm, clfleg trial_list = p.TrialList() data = trial_list.readFile('test.txt') test_back = (f.Features(data, 'k')).feature test_leg = (f.Features(data, 'g')).feature test_arm = (f.Features(data, 'm')).feature res1 = clfback.test(test_back, 5) res2 = clfleg.test(test_leg, 5) res3 = clfarm.test(test_arm, 5) s = 0 #s = 'back: ' + str(res1) + ' leg: '+ str(res2)+ ' arm: '+str(res3) + '\n' if res1 < -0.5: #s += "You're hunching your back.\n" s += 4 if res2 < -0.5: #s += "You're crossing your leg.\n" s += 1 if res3 < -0.5: #s += "Your arms are too close to your body.\n" s += 2 if res1 > -0.5 and res2 > -0.5 and res3 > -0.5: #s += "You have perfect posture!\n" s = 0 return s
def getTrainingData(): l = p.trial_list.getTrials() for x in l: features = f.Features(x) data.append(features.feature) if x.head.target == 'good': label.append(1) else: label.append(0)
def setupClassifier(path): l = p.getTrialList(path) for x in l: features = f.Features(x) data.append(features.feature) if x.head.target == 'good': label.append(1) else: label.append(0)
def getTestingData(path): l = p.getTrialList(path) for x in l: features = f.Features(x, path[-2]) data_test.append(features.feature) if x.head.target == 'good': label_test.append(1) else: label_test.append(0) print data_test[-1], label_test[-1]
def getTrainingData(path): l = p.getTrialList(path) for x in l: features = f.Features(x) data.append(features.feature) if x.head.target == 'good' or path[-2] != 'k': label.append(1) else: label.append(0) print data[-1], label[-1]
def testing(): trial_list = p.TrialList() data = trial_list.readFile('test.txt') test_data = (f.Features(data)).feature res = '' #print test_data for clf in classifiers: # print clf res += clf[0] + ' ' res += str(clf[1].predict(test_data)[0]) + '\n' return res
def setupClassifier(path): data = [] label = [] l = p.getTrialList(path) for x in l: features = f.Features(x, path[-2]) data.append(features.feature) if x.head.target == 'good': label.append(1) else: label.append(0) return knn.knn(data, label)
def testing_3(): global clfback, clfarm, clfleg trial_list = p.TrialList() data = trial_list.readFile('test.txt') test_data = (f.Features(data)).feature res1 = clfback.test(test_data, 10) res2 = clfleg.test(test_data, 10) res3 = clfarm.test(test_data, 10) print res1, res2, res3 minres = min(res1, res2, res3) if minres < -1.0: if minres == res1: s = "You're hunching your back.\n" elif minres == res2: s = "You're crossing your leg.\n" else: s = "Your arms are too close to your body.\n" else: s = "You have perfect posture!\n" return s
def testing_4(): global clf1, clf2, clf3, clf4 trial_list = p.TrialList() data = trial_list.readFile('test.txt') test_data = (f.Features(data)).feature res1 = clf1.test(test_data, 10) res2 = clf2.test(test_data, 10) res3 = clf3.test(test_data, 10) res4 = clf4.test(test_data, 10) str1, str2, str3 = "", "", "" if res1 == 0: str1 = "You're hunching your back" if res2 + res3 == 1: str2 = "You're leaning to the left/right." if res4 == 0: str3 = "Your arms are too close to your body." if res1 + res2 + res3 + res4 == 4: return "You have perfect posture!\n-------------------------------------------\n" return str1 + "\n" + str2 + "\n" + str3 + "\n-------------------------------------------\n"
def testing(): global classifier1 trial_list = p.TrialList() data = trial_list.readFile('test.txt') test_data = (f.Features(data)).feature return classifier1.test(test_data, 10)