Exemple #1
0
def world3(flag=False):
    dyn = dynamics.CarDynamics(0.1)
    world = World()
    clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
    world.roads += [clane]
    world.fences += [
        clane.shifted(2),
        clane.shifted(-2),
        clane.shifted(2.5),
        clane.shifted(-2.5)
    ]
    world.cars.append(
        car.UserControlledCar(dyn, [0., 0., math.pi / 2., 0.3], color='red'))
    world.cars.append(
        car.NestedOptimizerCar(dyn, [0., 0.3, math.pi / 2., 0.3],
                               color='yellow'))
    world.cars[1].human = world.cars[0]
    world.cars[0].bounds = [(-3., 3.), (-1., 1.)]
    if flag:
        world.cars[0].follow = world.cars[1].traj_h
    r_h = world.simple_reward([
        world.cars[1].traj
    ]) + 100. * feature.bounded_control(world.cars[0].bounds)

    @feature.feature
    def human(t, x, u):
        return (world.cars[1].traj_h.x[t][0]) * 10

    r_r = 300. * human + world.simple_reward(world.cars[1], speed=0.5)
    world.cars[1].rewards = (r_h, r_r)
    #world.objects.append(Object('firetruck', [0., 0.7]))
    return world
Exemple #2
0
 def get_control_reward(self, fw):
     """Compute the control reward."""
     control_r = (self.w_control * feature.control())
     bounded_control_r = (
         self.w_bounded_control *
         feature.bounded_control(fw, self.car_control_bounds))
     return control_r + bounded_control_r
Exemple #3
0
def world1(flag=False):
    dyn = dynamics.CarDynamics(0.1)
    world = World()
    clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
    world.roads += [clane]
    world.fences += [clane.shifted(2), clane.shifted(-2)]
    world.cars.append(
        car.UserControlledCar(dyn, [-0.13, 0., math.pi / 2., 0.3],
                              color='red'))
    world.cars.append(
        car.NestedOptimizerCar(dyn, [0.0, 0.5, math.pi / 2., 0.3],
                               color='yellow'))
    world.cars[1].human = world.cars[0]
    if flag:
        world.cars[0].follow = world.cars[1].traj_h
    r_h = world.simple_reward(
        [world.cars[1].traj],
        speed_import=.2 if flag else 1.,
        speed=0.8
        if flag else 1.) + 100. * feature.bounded_control(world.cars[0].bounds)

    @feature.feature
    def human_speed(t, x, u):
        return -world.cars[1].traj_h.x[t][3]**2

    r_r = 300. * human_speed + world.simple_reward(world.cars[1], speed=0.5)
    if flag:
        world.cars[0].follow = world.cars[1].traj_h
    world.cars[1].rewards = (r_h, r_r)
    #world.objects.append(Object('cone', [0., 1.8]))
    return world
Exemple #4
0
    def assign_nest_goal(self, acting_car, passive_car, acting_car_reward):

        if passive_car is None:
            acting_car.nested = False
            acting_car.simple_reward = acting_car_reward
        else:
            acting_car.nested = True
            acting_car.human = passive_car

            # create a list of all the trajectories that the human is doing collision avoidance with.
            # use true (not linear) trajectory for the robot car, since it is a Stackelberg game.

            # TODO: only use the cars close to the human
            trajs_to_avoid = []
            for ca in self.cars:
                if ca is acting_car:
                    trajs_to_avoid.append(ca.traj)
                elif ca is not passive_car:
                    trajs_to_avoid.append(ca.linear)

            hum_reward = self.simple_reward(
                trajs_to_avoid) + 100. * feature.bounded_control(
                    passive_car.bounds)

            acting_car.nested_rewards = (hum_reward, acting_car_reward)
Exemple #5
0
def world0():
    dyn = dynamics.CarDynamics(0.1)
    world = World()
    clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
    world.roads += [clane]
    world.fences += [clane.shifted(2), clane.shifted(-2)]
    world.cars.append(
        car.UserControlledCar(dyn, [-0.13, 0., math.pi / 2., 0.3],
                              color='red'))
    world.cars.append(
        car.NestedOptimizerCar(dyn, [0.0, 0.5, math.pi / 2., 0.3],
                               color='yellow'))
    world.cars[1].human = world.cars[0]
    r_h = world.simple_reward([
        world.cars[1].traj
    ]) + 100. * feature.bounded_control(world.cars[0].bounds)

    @feature.feature
    def human_speed(t, x, u):
        return -world.cars[1].traj_h.x[t][3]**2

    r_r = world.simple_reward(world.cars[1], speed=0.5)
    world.cars[1].rewards = (r_h, r_r)
    return world
Exemple #6
0
def world6(know_model=True):
    dyn = dynamics.CarDynamics(0.1)
    world = World()
    clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
    world.roads += [clane]
    world.fences += [clane.shifted(2), clane.shifted(-2), clane.shifted(2.5), clane.shifted(-2.5)]
    world.cars.append(car.SimpleOptimizerCar(dyn, [-0.13, 0., math.pi/2., 0.5], color='red'))
    if know_model:
        world.cars.append(car.NestedOptimizerCar(dyn, [0., 0.05, math.pi/2., 0.5], color='yellow'))
    else:
        world.cars.append(car.SimpleOptimizerCar(dyn, [0., 0.05, math.pi/2., 0.5], color='yellow'))
    world.cars[0].reward = world.simple_reward(world.cars[0], speed=0.6)
    world.cars[0].default_u = np.asarray([0., 1.])
    @feature.feature
    def goal(t, x, u):
        return -(10.*(x[0]+0.13)**2+0.5*(x[1]-2.)**2)
    if know_model:
        world.cars[1].human = world.cars[0]
        r_h = world.simple_reward([world.cars[1].traj], speed=0.6)+100.*feature.bounded_control(world.cars[0].bounds)
        r_r = 10*goal+world.simple_reward([world.cars[1].traj_h], speed=0.5)
        world.cars[1].rewards = (r_h, r_r)
    else:
        r = 10*goal+world.simple_reward([world.cars[0].linear], speed=0.5)
        world.cars[1].reward = r
    return world
Exemple #7
0
def world0():
    dyn = dynamics.CarDynamics(0.1)
    world = World()
    clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
    world.roads += [clane]
    world.fences += [clane.shifted(2), clane.shifted(-2)]
    world.cars.append(car.UserControlledCar(dyn, [-0.13, 0., math.pi/2., 0.3], color='red'))
    world.cars.append(car.NestedOptimizerCar(dyn, [0.0, 0.5, math.pi/2., 0.3], color='yellow'))
    world.cars[1].human = world.cars[0]
    r_h = world.simple_reward([world.cars[1].traj])+100.*feature.bounded_control(world.cars[0].bounds)
    @feature.feature
    def human_speed(t, x, u):
        return -world.cars[1].traj_h.x[t][3]**2
    r_r = world.simple_reward(world.cars[1], speed=0.5)
    world.cars[1].rewards = (r_h, r_r)
    return world
Exemple #8
0
def world3(flag=False):
    dyn = dynamics.CarDynamics(0.1)
    world = World()
    clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
    world.roads += [clane]
    world.fences += [clane.shifted(2), clane.shifted(-2), clane.shifted(2.5), clane.shifted(-2.5)]
    world.cars.append(car.UserControlledCar(dyn, [0., 0., math.pi/2., 0.3], color='red'))
    world.cars.append(car.NestedOptimizerCar(dyn, [0., 0.3, math.pi/2., 0.3], color='yellow'))
    world.cars[1].human = world.cars[0]
    world.cars[0].bounds = [(-3., 3.), (-1., 1.)]
    if flag:
        world.cars[0].follow = world.cars[1].traj_h
    r_h = world.simple_reward([world.cars[1].traj])+100.*feature.bounded_control(world.cars[0].bounds)
    @feature.feature
    def human(t, x, u):
        return (world.cars[1].traj_h.x[t][0])*10
    r_r = 300.*human+world.simple_reward(world.cars[1], speed=0.5)
    world.cars[1].rewards = (r_h, r_r)
    #world.objects.append(Object('firetruck', [0., 0.7]))
    return world
Exemple #9
0
def world4(flag=False):
    dyn = dynamics.CarDynamics(0.1)
    world = World()
    vlane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    hlane = lane.StraightLane([-1., 0.], [1., 0.], 0.13)
    world.lanes += [vlane, hlane]
    world.fences += [hlane.shifted(-1), hlane.shifted(1)]
    world.cars.append(
        car.UserControlledCar(dyn, [0., -.3, math.pi / 2., 0.0], color='red'))
    world.cars.append(
        car.NestedOptimizerCar(dyn, [-0.3, 0., 0., 0.], color='yellow'))
    world.cars[1].human = world.cars[0]
    world.cars[0].bounds = [(-3., 3.), (-2., 2.)]
    if flag:
        world.cars[0].follow = world.cars[1].traj_h
    world.cars[1].bounds = [(-3., 3.), (-2., 2.)]

    @feature.feature
    def horizontal(t, x, u):
        # isn't x[2] the heading, not the y location?
        return -x[2]**2

    r_h = world.simple_reward(
        [world.cars[1].traj],
        lanes=[vlane],
        fences=[vlane.shifted(-1), vlane.shifted(1)] *
        2) + 100. * feature.bounded_control(world.cars[0].bounds)

    @feature.feature
    def human(t, x, u):
        return -tt.exp(-10 * (world.cars[1].traj_h.x[t][1] - 0.13) / 0.1)

    r_r = human * 10. + horizontal * 30. + world.simple_reward(
        world.cars[1],
        lanes=[hlane] * 3,
        fences=[hlane.shifted(-1), hlane.shifted(1)] * 3 +
        [hlane.shifted(-1.5), hlane.shifted(1.5)] * 2,
        speed=0.9)
    world.cars[1].rewards = (r_h, r_r)
    return world
 def reward(self, reward):
     # tar fram reward med hjalp av input och reward fran bounded_control
     # bounded_control anvander sig av kollisions boxarna i varlden
     self._reward = reward + 100. * feature.bounded_control(self.bounds)
     self.optimizer = None  # skapar en tom optimizer
Exemple #11
0
def world_kex1(know_model=True):
    start_human = -0.13
    start_robot = -0.00
    dyn = dynamics.CarDynamics(0.1)
    world = World()
    clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
    world.roads += [clane]
    world.fences += [
        clane.shifted(2),
        clane.shifted(-2),
        clane.shifted(2.5),
        clane.shifted(-2.5)
    ]
    #world.cars.append(car.SimpleOptimizerCar(dyn, [start_human, 0., math.pi/2., 0.5], color='red')) # red car is human
    world.cars.append(
        car.NestedOptimizerCar(dyn, [start_human, 0., math.pi / 2., 0.5],
                               color='red'))  # red car is human
    if know_model:  # yellow car is the robot that uses nested optimizer to find the way
        world.cars.append(
            car.NestedOptimizerCar(dyn, [start_robot, 0.0, math.pi / 2., 0.5],
                                   color='yellow'))
    else:
        world.cars.append(
            car.SimpleOptimizerCar(dyn, [start_robot, 0.0, math.pi / 2., 0.5],
                                   color='yellow'))
    world.cars[0].reward = world.simple_reward(world.cars[0], speed=0.6)
    world.cars[0].default_u = np.asarray([0., 1.])

    @feature.feature
    def goal(t, x, u):  # doesnt need this
        k = -(10. * (x[0] + 0.13)**2 + 0.5 * (x[1] - 2.)**2)  #ASK Elis
        #print("--------", x[0].auto_name)
        #print("--------", x[1].auto_name)
        #exit()
        return k

    # object--------------
    world.cars.append(
        car.SimpleOptimizerCar(dyn, [-0.13, 0.5, math.pi / 2., 0.0],
                               color='blue'))  # blue car is obstacle
    #world.cars.append(car.NestedOptimizerCar(dyn, [-0.13, 0.5, math.pi/2., 0.0], color='blue')) # blue car is obstacle
    #print(world.cars)
    #exit()
    world.cars[2].reward = world.simple_reward(world.cars[2], speed=0.0)
    #world.cars[2].reward = 1
    world.cars[2].default_u = np.asarray([0., 0.])
    world.cars[2].movable = False

    #------------------

    if know_model:
        world.cars[1].human = world.cars[
            0]  # [1] is robot, asigns that the robot knows who is the human
        world.cars[1].obstacle = world.cars[2]
        world.cars[0].obstacle = world.cars[2]
        world.cars[0].human = world.cars[1]

        # reward with respect to the robot trajectory: world.cars[1].traj
        r_h = world.simple_reward(
            [world.cars[1].traj], speed=0.5) + 100. * feature.bounded_control(
                world.cars[0].bounds) + 100. * feature.bounded_control(
                    world.cars[2].bounds)

        #r_r = 10*goal+world.simple_reward([world.cars[1].traj_h], speed=0.5
        r_r = world.simple_reward(
            [world.cars[1].traj_h],
            speed=0.5) + 100. * feature.bounded_control(world.cars[2].bounds)

        r_h2 = world.simple_reward(
            [world.cars[1].traj_h],
            speed=0.5) + 100. * feature.bounded_control(world.cars[0].bounds)
        +100. * feature.bounded_control(world.cars[2].bounds)
        #r_r = 10*goal+world.simple_reward([world.cars[1].traj_h], speed=0.5
        r_r2 = world.simple_reward(
            [world.cars[1].traj],
            speed=0.5) + 100. * feature.bounded_control(world.cars[2].bounds)

        #r_obj = world.simple_reward([world.cars[1].traj_h], speed=0.0)
        world.cars[1].rewards = (r_h, r_r)  #ADD: r_object
        world.cars[0].rewards = (r_h2, r_r2)  #(optimize on, the car)
        #print(r_h)
        #print(r_r)
        #print(world.cars[1].rewards)
        #exit()
    else:
        r = 10 * goal + world.simple_reward([world.cars[0].linear], speed=0.5)
        world.cars[1].reward = r

    #world.cars.append(static_obj.SimpleOptimizerCar(dyn, [-0.13, 0.5, math.pi/2., 0.0], color='blue')) # blue car is obstacle)

    return world
Exemple #12
0
def world_kex_old(know_model=True):
    dyn = dynamics.CarDynamics2(0.1)
    #dyn.dt = 1.0
    #dyn.fiction = 0.0
    world = World()
    # clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    # world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
    # world.roads += [clane]
    # world.fences += [clane.shifted(2), clane.shifted(-2), clane.shifted(2.5), clane.shifted(-2.5)]

    clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    world.lanes += [clane, clane.shifted(1)]
    #world.roads += [clane, clane.shifted(1)]
    world.fences += [clane.shifted(2), clane.shifted(-1)]

    human_is_follower = False

    # CAR 0 = Human
    # CAR 1 = Robot
    # CAR 2 = Obstacle

    # IMPORTANT: Folower must be created first
    # depending on what our human is, follower or leader we create the cars differently
    if human_is_follower:

        # Create the cars-----
        # Human Car
        #world.cars.append(car.NestedOptimizerCarFollower(dyn, [-0.13, 0.0, math.pi/2., 0.5], color='red', T=3))
        world.cars.append(
            car.NestedOptimizerCarFollower2(dyn,
                                            [-0.13, 0.0, math.pi / 2., 0.5],
                                            color='red',
                                            T=3))

        # Robot Car
        world.cars.append(
            car.NestedOptimizerCarLeader(dyn, [-0., 0., math.pi / 2., 0.5],
                                         color='yellow',
                                         T=3))
        #world.cars[0].leader = world.cars[1]
        #world.cars[0].leader1 = world.cars[1]
        # --------------------
    else:
        # Create the cars-----
        # Human Car
        world.cars.append(
            car.NestedOptimizerCarFollower2(dyn, [0., 0., math.pi / 2., 0.5],
                                            color='yellow',
                                            T=3))
        world.cars.append(
            car.NestedOptimizerCarLeader(dyn, [-0.13, 0.0, math.pi / 2., 0.5],
                                         color='red',
                                         T=3))
        # Robot Car
        #world.cars.append(car.NestedOptimizerCarFollower(dyn, [0., 0., math.pi/2., 0.5], color='yellow', T=3))
        #world.cars[1].leader = world.cars[0]
        #world.cars[1].leader1 = world.cars[0]
        # --------------------

    # Obstacle Car
    #world.cars.append(car.SimpleOptimizerCar(dyn, [-0.13, 0.5, math.pi/2., 0.5], color='blue')) # doesnt work because it cant force the car to turn around
    world.cars.append(
        car.SimpleOptimizerCar(dyn, [-0.13, 2, math.pi / 4., 0.],
                               color='blue'))
    # --------------------

    # Reward and default for the Human ---
    # speed did not change here
    # world.cars[0].reward = world.simple_reward(world.cars[0], speed=0.6)
    world.cars[0].default_u = np.asarray([0., 1.])
    # ------------------------------------

    # Reward and default for the Robot ---
    # world.cars[1].reward = world.simple_reward(world.cars[1], speed=0.6)
    world.cars[1].default_u = np.asarray([0., 1.])
    # ------------------------------------

    # Reward and default for the Obstacle ---
    world.cars[2].reward = world.simple_reward(world.cars[2], speed=0.)
    world.cars[2].default_u = np.asarray([0., 0.])
    world.cars[2].movable = False
    # ------------------------------------

    # CAR 0 = Human
    # CAR 1 = Robot
    # CAR 2 = Obstacle

    if human_is_follower:
        world.cars[0].leader = world.cars[1]
        world.cars[0].obstacle = world.cars[2]
        world.cars[1].follower = world.cars[0]
        world.cars[1].obstacle = world.cars[2]
    else:
        world.cars[1].follower = world.cars[0]
        world.cars[1].obstacle = world.cars[2]
        world.cars[0].leader = world.cars[1]
        world.cars[0].obstacle = world.cars[2]

    # CAR 0 = Human
    # CAR 1 = Robot
    # CAR 2 = Obstacle

    # TODO: Fix this part, unsure how to make the world.simplereward
    # calculates the dynamic(chaning) rewards for the cars depending on their speed and collision with other cars and obstacles

    #TODO: this is what is wrong, they need to be the same
    # TODO: cars dont want to slow down, find a solution that works
    if human_is_follower:
        # HUMAN
        #r_h = world.simple_reward([world.cars[1].traj], speed=0.6)+100.*feature.bounded_control(world.cars[0].bounds)+world.simple_reward(world.cars[0].traj_o, speed=0.) # Reward for the human
        r_h = world.simple_reward(
            [world.cars[1].traj], speed=0.80) + 100. * feature.bounded_control(
                world.cars[0].bounds) + 1 * world.simple_reward(
                    world.cars[1].traj_o, speed=0.80)  # Reward for the human

        # ROBOT

        r_r = world.simple_reward(
            [world.cars[1].traj_h],
            speed=0.8) + 100. * feature.bounded_control(
                world.cars[1].bounds) + 1 * world.simple_reward(
                    world.cars[1].traj_o, speed=0.8)  # Reward for the robot
    else:
        # HUMAN
        r_h = world.simple_reward(
            [world.cars[1].traj_h],
            speed=0.8) + 100. * feature.bounded_control(
                world.cars[0].bounds) + 1 * world.simple_reward(
                    world.cars[1].traj_o, speed=0.8)  # Reward for the human

        # ROBOT
        r_r = world.simple_reward(
            [world.cars[1].traj], speed=0.8) + 100. * feature.bounded_control(
                world.cars[1].bounds) + 1 * world.simple_reward(
                    world.cars[1].traj_o, speed=0.8)  # Reward for the robot

    r_o = 1. * feature.bounded_control(world.cars[2].bounds)
    #r_o = world.simple_reward([world.cars[0].traj_o], speed=0.)

    world.cars[0].rewards = (r_r, r_h, r_o)
    world.cars[1].rewards = (r_h, r_r, r_o)
    # ------------------------------------

    return world
Exemple #13
0
    def move_humans_from_lane(self, lane_idx):
        def move_from_lane(rob_car,
                           desired_xloc,
                           width=0.5,
                           lane_width=lane.DEFAULT_WIDTH):
            @feature.feature
            def f(t, x, u):
                return tt.exp(-0.5 *
                              ((rob_car.traj_h.x[t][0] - desired_xloc)**2) /
                              (width**2 * lane_width * lane_width / 4.))

            return f

        # collect the cars in the lane of interest
        lane_car_idcs = []
        for i in range(len(self.cars)):
            if (self.veh_lanes[self.cars[i]] == lane_idx):
                lane_car_idcs.append(i)

        # Order the cars by position

        # create a list of the vehicle y-positions in the mixed lane
        mixed_veh_ypos = [self.cars[i].x[1] for i in lane_car_idcs]

        # now sort these indices according to vehicle y-position
        sorted_idcs = np.argsort(np.array(mixed_veh_ypos))

        # Now go through these cars and see if there is a human vehicle behind them.
        # If so, get the human to leave the lane. If not, if there is a robot in front,
        # platoon with them
        for i in range(len(sorted_idcs)):

            acting_car = self.cars[lane_car_idcs[sorted_idcs[i]]]

            # only assign goals if the car is a robot
            if acting_car.iamrobot:
                # If this isn't the last car in the lane, check behind it
                if (i != 0):

                    if not self.cars[lane_car_idcs[sorted_idcs[i -
                                                               1]]].iamrobot:
                        # then kick the car out
                        acting_car.nested = True
                        acting_car.human = self.cars[lane_car_idcs[sorted_idcs[
                            i - 1]]]

                        rob_reward = acting_car.baseline_reward + 400. * move_from_lane(
                            acting_car,
                            desired_xloc=self.lane_centers[
                                self.veh_lanes[acting_car] + 1])

                        #TODO: add speed into here! maybe assume that the current speed is the desired speed??

                        # create a list of all the trajectories that the human is doing collision avoidance with.
                        # use true (not linear) trajectory for the robot car, since it is a Stackelberg game.

                        # TODO: only use the cars close to the human
                        trajs_to_avoid = []
                        for ca in self.cars:
                            if ca is acting_car:
                                trajs_to_avoid.append(ca.traj)
                            elif ca is not self.cars[lane_car_idcs[sorted_idcs[
                                    i - 1]]]:
                                trajs_to_avoid.append(ca.linear)

                        hum_reward = self.simple_reward(
                            trajs_to_avoid) + 100. * feature.bounded_control(
                                acting_car.human.bounds)

                        acting_car.nested_rewards = (hum_reward, rob_reward)

                    # if the car in front it is a robot, then be free to platoon (since the car behind it is a robot too)
                    # check that it is not the front-most car in the lane
                    elif i < len(mixed_veh_ypos) - 1:
                        # if there is a robot in front of it, platoon with them
                        if self.cars[lane_car_idcs[sorted_idcs[i +
                                                               1]]].iamrobot:
                            # Then platoon with the car in front
                            acting_car.nested = False
                            acting_car.platoon(
                                self.cars[lane_car_idcs[sorted_idcs[i + 1]]])
                # if it is the rear-most vehicle in a lane, check that it is not the only vehicle in the lane
                elif i < len(mixed_veh_ypos) - 1:
                    if self.cars[lane_car_idcs[sorted_idcs[i + 1]]].iamrobot:
                        # Then platoon with the car in front
                        acting_car.nested = False
                        acting_car.platoon(
                            self.cars[lane_car_idcs[sorted_idcs[i + 1]]])
Exemple #14
0
def world_kex(know_model=True):
    dyn = dynamics.CarDynamics2(0.1)
    world = World()

    clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    world.lanes += [clane, clane.shifted(1)]
    #world.roads += [clane, clane.shifted(1)]
    world.fences += [clane.shifted(2), clane.shifted(-1)]

    # both behind: pos=0.027 (both begind) and pos=0.028 (different behaviours)
    # both infront: pos=0.128 (different behaviours) and pos=0.129 (both infront) to switch
    # We run:
    # T_stepls = 3
    # step_per_u = 2
    # speed = 0.80
    # we have 3 different results:
    # 1. both begind
    # 2. both infront
    # 3. different behaviour depending on role
    # to get the distance take the pos/0.13 to get it to irl meters

    left_is_follower = False
    pos = 0.15

    #pos = 0.15
    #pos=0.0

    T_steps = 3
    speed = 0.80
    #pos = 0.128

    #pos = 0.028

    # THIS WORKS
    # steps per u is 2
    #left_is_follower = False
    #T_steps = 3
    #pos = 0.10 #WORKS
    #speed = 0.80

    # Demonstration
    left_color = "green"
    right_color = "blue-dark"

    # Real
    #follower_color = "yellow"
    #leader_color = "red"

    # Follower must alwasy be created first, otherwise it won't move
    if left_is_follower:
        world.cars.append(
            car.NestedOptimizerCarFollower2(dyn,
                                            [-0.13, pos, math.pi / 2., speed],
                                            color=left_color,
                                            T=T_steps))

        world.cars.append(
            car.NestedOptimizerCarLeader(dyn, [-0.0, 0.0, math.pi / 2., speed],
                                         color=right_color,
                                         T=T_steps))
    else:
        world.cars.append(
            car.NestedOptimizerCarFollower2(dyn,
                                            [-0.0, 0.0, math.pi / 2., speed],
                                            color=right_color,
                                            T=T_steps))

        world.cars.append(
            car.NestedOptimizerCarLeader(dyn,
                                         [-0.13, pos, math.pi / 2., speed],
                                         color=left_color,
                                         T=T_steps))

    #world.cars.append(car.SimpleOptimizerCar(dyn, [-0.13, 2, math.pi/4., 0.], color='blue'))

    # THE OBSTACLE IT WORKS WITH
    #world.cars.append(car.SimpleOptimizerCar(dyn, [-0.20, 1, math.pi/4., 0.], color='blue'))

    # THE OBSTACLE FOR DEMONSTRATIONS
    world.cars.append(
        car.SimpleOptimizerCar(dyn, [-0.20, 0.7, math.pi / 4., 0.],
                               color='gray'))

    # default_u for the cars
    world.cars[0].default_u = np.asarray([0., 1.])
    world.cars[1].default_u = np.asarray([0., 1.])

    # Reward and default for the Obstacle ---
    world.cars[2].reward = world.simple_reward(world.cars[2], speed=0.)
    world.cars[2].default_u = np.asarray([0., 0.])
    world.cars[2].movable = False

    # tells the cars who is the follower and who is the leader
    world.cars[0].leader = world.cars[1]
    world.cars[1].follower = world.cars[0]
    world.cars[0].obstacle = world.cars[2]
    world.cars[1].obstacle = world.cars[2]

    r_leader = world.simple_reward(
        [world.cars[1].traj_h, world.cars[1].traj_o, world.cars[1].traj_o],
        speed=speed)
    # leader doesnt need bounded controls, only the follower

    r_follower = world.simple_reward(
        [world.cars[1].traj, world.cars[1].traj_o, world.cars[1].traj_o],
        speed=speed) + 100. * feature.bounded_control(world.cars[0].bounds)

    r_o = 0.
    #r_o = world.simple_reward([world.cars[0].traj_o], speed=0.)

    world.cars[0].rewards = (r_leader, r_follower)
    world.cars[1].rewards = (r_follower, r_leader)
    # ------------------------------------

    return world
Exemple #15
0
def world5():
    dyn = dynamics.CarDynamics(0.1)
    world = World()
    vlane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    hlane = lane.StraightLane([-1., 0.], [1., 0.], 0.13)
    world.lanes += [vlane, hlane]
    world.fences += [hlane.shifted(-1), hlane.shifted(1)]
    world.cars.append(car.UserControlledCar(dyn, [0., -.3, math.pi/2., 0.0], color='red'))
    world.cars.append(car.NestedOptimizerCar(dyn, [-0.3, 0., 0., 0.0], color='yellow'))
    world.cars[1].human = world.cars[0]
    world.cars[1].bounds = [(-3., 3.), (-2., 2.)]
    @feature.feature
    def horizontal(t, x, u):
        return -x[2]**2
    r_h = world.simple_reward([world.cars[1].traj], lanes=[vlane], fences=[vlane.shifted(-1), vlane.shifted(1)]*2)+100.*feature.bounded_control(world.cars[0].bounds)
    @feature.feature
    def human(t, x, u):
        return -tt.exp(10*(world.cars[1].traj_h.x[t][1]-0.13)/0.1)
    r_r = human*10.+horizontal*2.+world.simple_reward(world.cars[1], lanes=[hlane]*3, fences=[hlane.shifted(-1), hlane.shifted(1)]*3+[hlane.shifted(-1.5), hlane.shifted(1.5)]*2, speed=0.9)
    world.cars[1].rewards = (r_h, r_r)
    return world
Exemple #16
0
def world1(flag=False):
    dyn = dynamics.CarDynamics(0.1)
    world = World()
    clane = lane.StraightLane([0., -1.], [0., 1.], 0.13)
    world.lanes += [clane, clane.shifted(1), clane.shifted(-1)]
    world.roads += [clane]
    world.fences += [clane.shifted(2), clane.shifted(-2)]
    world.cars.append(car.UserControlledCar(dyn, [-0.13, 0., math.pi/2., 0.3], color='red'))
    world.cars.append(car.NestedOptimizerCar(dyn, [0.0, 0.5, math.pi/2., 0.3], color='yellow'))
    world.cars[1].human = world.cars[0]
    if flag:
        world.cars[0].follow = world.cars[1].traj_h
    r_h = world.simple_reward([world.cars[1].traj], speed_import=.2 if flag else 1., speed=0.8 if flag else 1.)+100.*feature.bounded_control(world.cars[0].bounds)
    @feature.feature
    def human_speed(t, x, u):
        return -world.cars[1].traj_h.x[t][3]**2
    r_r = 300.*human_speed+world.simple_reward(world.cars[1], speed=0.5)
    if flag:
        world.cars[0].follow = world.cars[1].traj_h
    world.cars[1].rewards = (r_h, r_r)
    #world.objects.append(Object('cone', [0., 1.8]))
    return world
Exemple #17
0
 def reward(self, reward):
     self._reward = reward + 100. * feature.bounded_control(self.bounds)
     self.optimizer = None
Exemple #18
0
    def assign_goals_phase_zero(self):

        # make sure we are in the correct phase
        assert (self.cur_phase == 0)

        # first update our knowledge of where the vehicles are
        self.find_veh_lanes()

        for c in self.rob_cars:
            if (self.veh_lanes[c] == self.rob_cars_lane_asg[c]):
                # change the a simple optimizer and remove the car from the list
                c.nested = False
                # put back to baseline reward
                c.simple_reward = c.baseline_reward

        # Now with the remaining vehicles, assign them reward functions to get closer to their goals
        # TODO: if there is a smart vehicle nearby, just go in front of that one and turn down collision avoidance for smart vehicles

        def move_to_lane(desired_xloc,
                         width=0.5,
                         lane_width=lane.DEFAULT_WIDTH):
            @feature.feature
            def f(t, x, u):
                return tt.exp(-0.5 * ((x[0] - desired_xloc)**2) /
                              (width**2 * lane_width * lane_width / 4.))

            return f

        for c in self.rob_cars:
            # if the car is in the right place, make sure it goes back to its baseline reward
            if (self.veh_lanes[c] == self.rob_cars_lane_asg[c]):
                c.nested = False
                # put back to baseline reward
                c.simple_reward = c.baseline_reward
            else:
                if (self.rob_cars_lane_asg[c] > self.veh_lanes[c]):
                    # Then we want to move the car to the right
                    # TODO: does this actually change the reward or just in a shallow copy?
                    #new_reward = c.simple_reward + move_right_reward
                    new_reward = c.baseline_reward + 100. * move_to_lane(
                        desired_xloc=self.lane_centers[self.veh_lanes[c] + 1])
                    move_direction = 1
                else:
                    new_reward = c.baseline_reward + 100. * move_to_lane(
                        desired_xloc=self.lane_centers[self.veh_lanes[c] - 1])
                    move_direction = -1

                # Find if there is a vehicle blocking -- just pair with the first vehicle behind it in the lane over
                #TODO: change this so it can be one car-length in front and still be considered blocking
                candidate = None
                for cb in self.cars:
                    if cb.iamrobot:
                        continue
                    if self.veh_lanes[
                            cb] == self.veh_lanes[c] + move_direction:
                        if (candidate is None) and (cb.x[1] <= c.x[1]):
                            candidate = cb
                        else:
                            # Find which is more blocking -- closer in y-position but still behind
                            if ((cb.x[1] <= c.x[1])
                                    and (cb.x[1] > candidate.x[1])):
                                candidate = cb

                if candidate is None:
                    c.nested = False
                    c.simple_reward = new_reward
                else:
                    c.nested = True
                    c.human = candidate

                    # create a list of all the trajectories that the human is doing collision avoidance with.
                    # use true (not linear) trajectory for the robot car, since it is a Stackelberg game.

                    # TODO: only use the cars close to the human
                    trajs_to_avoid = []
                    for ca in self.cars:
                        if ca is c:
                            trajs_to_avoid.append(ca.traj)
                        elif ca is not candidate:
                            trajs_to_avoid.append(ca.linear)

                    #TODO: add speed into simple reward!
                    hum_reward = self.simple_reward(
                        trajs_to_avoid) + 100. * feature.bounded_control(
                            candidate.bounds)

                    c.nested_rewards = (
                        hum_reward, new_reward
                    )  # This assumes perfect knowledge of human reward functions
Exemple #19
0
 def reward(self, reward):
     self._reward = reward+100.*feature.bounded_control(self.bounds)
     self.optimizer = None