Exemple #1
0
def match(im):
    atlas = feature.im_read('scripts_testing/plate-34.jpg')

    if affine:
        kp, des = feature.extract_sift(im)
        kp2, des2 = feature.extract_sift(atlas)
    else:
        kp, des = sift.detectAndCompute(im, None)
        kp2, des2 = sift.detectAndCompute(atlas, None)

    match = feature.match(im, kp, des, atlas, kp2, des2)
    print("Matches: ", len(match.matches))
    print("Inliers: ", match.inlier_count)
    plt.figure(figsize=(10,10))
    plt.imshow(match.result)
    plt.figure(figsize=(10,10))
    plt.imshow(match.result2)

    return match.H
    filledLength = int(length * iteration // total)
    bar = fill * filledLength + '-' * (length - filledLength)
    print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end='\r')
    # Print New Line on Complete
    if iteration == total:
        print()


filename = 'atlas_swanson_regions/Level-34-Region.jpg'
output_filename = 'results/Level-34-range2'
points = 30
disp_range = range(30, 50)
nissl_range = range(1, config.NISSL_COUNT + 1)

print("***** Beginning batch processing")
im = feature.im_read(filename)
csv_filename = output_filename + "-" + str(points) + "pts.csv"

with open(csv_filename, 'w') as csvfile:
    fieldnames = ['warp_points', 'warp_disp', 'plate', 'matches', 'inliers']
    writer = csv.DictWriter(csvfile,
                            fieldnames=fieldnames,
                            delimiter=',',
                            lineterminator='\n')

    writer.writeheader()

    for disp in disp_range:
        printProgressBar(int(disp / disp[0]), len(disp_range), prefix='Disp: ')
        # Warp image
        im_warp = feature.warp(im, points, None, None, disp, None)
Exemple #3
0

def cv2_ransac(src_pts, dst_pts):
    import cv2
    H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,
                                 config.RANSAC_REPROJ_TRESHHOLD, None,
                                 config.RANSAC_MAX_ITERS,
                                 config.RANSAC_CONFIDENCE)
    return {
        "homography": H,
        "inlier_mask": mask,
        "inlier_count": mask.ravel().sum(),
        "original_inlier_mask": None,
        "total_error": -1,
        "min_error": -1,
        "max_error": -1,
        'metric': mask.ravel().sum()
    }


import sys
logbook.StreamHandler(
    sys.stdout, level=logbook.DEBUG,
    format_string=config.LOGGER_FORMAT_STRING).push_application()
if __name__ == '__main__':
    import feature
    im_region = feature.im_read(
        'C:/Users/xeroj/Desktop/Local_Programming/Vision-Rat-Brain/scripts_testing/region.jpg'
    )

    feature.match_region_nissl(im_region, nissl_level=34)
Exemple #4
0
    else:
        kp, des = sift.detectAndCompute(im, None)
        kp2, des2 = sift.detectAndCompute(atlas, None)

    match = feature.match(im, kp, des, atlas, kp2, des2)
    print("Matches: ", len(match.matches))
    print("Inliers: ", match.inlier_count)
    plt.figure(figsize=(10,10))
    plt.imshow(match.result)
    plt.figure(figsize=(10,10))
    plt.imshow(match.result2)

    return match.H

filename = 'scripts_testing/region-70-HQ.jpg'
im_region = feature.im_read(filename)
im_region_gray = feature.im_read(filename, flags=cv2.IMREAD_GRAYSCALE)

# *************** Resizing
#im_region = misc.imresize(im_region, (170, 310))
im_region = misc.imresize(im_region, 10)

# *************** Convolution
#n = 6
#kernel = np.ones((n,n),np.float32)/(n**2)
#dst = cv2.filter2D(im_region,-1,kernel)

affine = True
draw_kp(feature.im_read('scripts_testing/region-34.jpg'))
draw_kp(im_region)
 def refresh_image(self):
     im = feature.im_read(self.nissl_filename)
     self.canvas_input.imshow(im)