def loading_target_CRFs(command):
    if command == 'twitter':
        # loading target labels
        path_ = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF'
        name_ = 'labeling_all.txt'
        list_line_ = filterTxt_CRF(load_file(path_, name_), command='removeLink')

    elif command == 'sgforums':
        # loading target labels
        path_ = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/sgforums/20152207_singaporebuses_all_posts/labeling_CRF'
        name_ = 'Label_all_crf.txt'
        list_line_ = load_file(path_, name_)

    elif command == 'facebook':
        # loading target labels
        path_ = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/facebook/BusNews/labeling_CRF'
        name_ = 'label.txt'
        list_line_ = filterTxt_CRF(load_file(path_, name_), command='removePunc')

    Y = np.array(load_target_label(list_line_))
    print 'Finish loading target label ' + command
    return Y
    # path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLinkWordVector/wordVec_30'
    # path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLinkWordVector/wordVec_70'
    # path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLinkWordVector/wordVec_100'
    # path_ftr = 'D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLinkWordVector/wordVec_150'
    path_ftr = "D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF/crf_features/features_rmLinkWordVector/wordVec_200"
    files_ = folder_files(path_ftr)
    features = featuers_CRF(files_, path_ftr)
    # construct_ftr_CRF_wordVector(features)
    X = np.array(construct_ftr_CRF_wordVector(features))  # construct the features for CRF
    print X.shape
    print "Finish loading features for CRF"
    #
    # # loading target labels
    path_ = "D:/Project/Transportation_SMU-NEC_collaboration/Data/twitter/labeling_CRF"
    name_ = "labeling_all.txt"
    list_line_ = filterTxt_CRF(load_file(path_, name_), "removeLink", "model")
    Y = np.array(load_target_label(list_line_))
    print Y.shape
    print "Finish loading target label"
    #
    # # for index in range(0, len(X)):
    # #     print len(X[index]), len(Y[index])
    #
    # # running CRF models
    # n_cross_valid_crf(X, Y, K=5, command='metrics_F1')  # use to calculate the F1 for classification
    n_cross_valid_crf(X, Y, K=5, command="confusion_matrix")  # use to calculate the F1 for classification
    # # n_cross_valid_crf(X, Y, K=5, command='write_results')  # use to calculate the confusion matrix
    #
    # stop = timeit.default_timer()
    # print 'Finish running CRF model %.3f sec' % (stop - start)